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ABSTRACT

ESTIMATE OF AVERAGE ELASTOPLASTIC MODULI OF
COMPOSITES AND
LOCALIZED DEFORMATION

Koji DOBOKU

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

In order to compare the characteristics of the stress rates, localization of deformation

was predicted by using the Truesdell stress rate and the convected stress rate, and the results
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were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.
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1. Introduction

Analytical methods for averaging the material characteristics of composites are extremely
useful in designing new materials long before carrying out either experimental trials or nu-
merical analyses with precise models of microstructure. Among many such methods, the
Mori-Tanaka approach? is a simple one used to evaluate the average elastic and elastoplas-

2. However, since the method does not take into account the

tic properties of composites
mechanical interactions between many inhomogeneities, the predicted behavior, especially
in the plastic states, tends to be significantly stiffer than what is observed in experiments.
In order to improve its ability to predict the behavior of materials, a variety of approaches
has been suggested: an explicit geometrical distribution of inhomogeneities was assumed
and introduced®, and secant and tangential moduli were employed to evaluate interactions
approximately by Doe?.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results

were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.



2. The averaging approach to multi-phase

elastoplastic composites

(1) Mori-Tanaka averaging in incremental form

a) 3D expression

Suppose that there are (N — 1) different types of ellipsoidal inhomogeneities distributed
in an infinite body where the N-th phase is the matrix. Let -, & and C denote the incremental
stress tensor, incremental strain tensor and tangential isotropic elastic tensor, respectively.
Since a virtual matrix introduced in the next section is an elastic body because, for exam-
ple, the Eshelby tensor can be easily evaluated, the matrix (N-th phase) is assumed to be
isotropically elastic, and the corresponding constitutive relation in rate form is expressed as

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

(2) Localization

a) Classical approachs

Then, based on the Mori-Tanaka approach, an approximate average constitutive relation
of the matrix can be assumed by

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

b) Finite deformation

The strain field of the i-th inhomogeneity must include the interaction between the par-

ticular inhomogeneity and the surrounding matrix material, and can be written as



The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
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3. Experimental approaches

(1) Uniaxial case

a) Infinitesimal deformation

Then the equivalent inclusion method™ allows the following expression in the i-th inho-
mogeneity as
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4. Concluding remarks
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was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

Finally, we can define the overall average incremental stress o and the corresponding

incremental strain € of the composite by simple volume averages as
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updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
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(2) Incremental theory
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plane strain state, the predicted stresses of incipience of the localization by the Truesdell
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stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.
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ABSTRACT

Estimate of Average Elastoplastic Moduli of Composites and

Localized Deformation

Koji DOBOKU

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation was
predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
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Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation was
predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.
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ABSTRACT

ESTIMATE OF AVERAGE ELASTOPLASTIC MODULI OF
COMPOSITES AND
LOCALIZED DEFORMATION

Koji DOBOKU

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

In order to compare the characteristics of the stress rates, localization of deformation

was predicted by using the Truesdell stress rate and the convected stress rate, and the results

il



were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.
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1. Introduction

Analytical methods for averaging the material characteristics of composites are extremely
useful in designing new materials long before carrying out either experimental trials or nu-
merical analyses with precise models of microstructure. Among many such methods, the
Mori-Tanaka approach? is a simple one used to evaluate the average elastic and elastoplas-

2. However, since the method does not take into account the

tic properties of composites
mechanical interactions between many inhomogeneities, the predicted behavior, especially
in the plastic states, tends to be significantly stiffer than what is observed in experiments.
In order to improve its ability to predict the behavior of materials, a variety of approaches
has been suggested: an explicit geometrical distribution of inhomogeneities was assumed
and introduced®, and secant and tangential moduli were employed to evaluate interactions
approximately by Doe?.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results

were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.



2. The averaging approach to multi-phase

elastoplastic composites

(1) Mori-Tanaka averaging in incremental form

a) 3D expression

Suppose that there are (N — 1) different types of ellipsoidal inhomogeneities distributed
in an infinite body where the N-th phase is the matrix. Let -, & and C denote the incremental
stress tensor, incremental strain tensor and tangential isotropic elastic tensor, respectively.
Since a virtual matrix introduced in the next section is an elastic body because, for exam-
ple, the Eshelby tensor can be easily evaluated, the matrix (N-th phase) is assumed to be
isotropically elastic, and the corresponding constitutive relation in rate form is expressed as

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

(2) Localization

a) Classical approachs

Then, based on the Mori-Tanaka approach, an approximate average constitutive relation
of the matrix can be assumed by

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

b) Finite deformation

The strain field of the i-th inhomogeneity must include the interaction between the par-

ticular inhomogeneity and the surrounding matrix material, and can be written as



The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.



3. Experimental approaches

(1) Uniaxial case

a) Infinitesimal deformation

Then the equivalent inclusion method™ allows the following expression in the i-th inho-
mogeneity as

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.

Since this stress rate takes into account only the effect of finite rotation; i.e. spin during



motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.



4. Concluding remarks

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation



was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

Finally, we can define the overall average incremental stress o and the corresponding

incremental strain € of the composite by simple volume averages as



APPENDIX A . Ductility

(1) In the case of ...

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be

defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an

10



11

updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an

updated Lagrangian measure.

(2) Incremental theory

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



12

stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an

updated Lagrangian measure.
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ABSTRACT

Estimate of Average Elastoplastic Moduli of Composites and

Localized Deformation

Koji DOBOKU

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation was
predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
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Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation was
predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.
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ABSTRACT

ESTIMATE OF AVERAGE ELASTOPLASTIC MODULI OF
COMPOSITES AND
LOCALIZED DEFORMATION

Koji DOBOKU

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

In order to compare the characteristics of the stress rates, localization of deformation

was predicted by using the Truesdell stress rate and the convected stress rate, and the results

il



were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.
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1. Introduction

Analytical methods for averaging the material characteristics of composites are extremely
useful in designing new materials long before carrying out either experimental trials or nu-
merical analyses with precise models of microstructure. Among many such methods, the
Mori-Tanaka approach? is a simple one used to evaluate the average elastic and elastoplas-

2. However, since the method does not take into account the

tic properties of composites
mechanical interactions between many inhomogeneities, the predicted behavior, especially
in the plastic states, tends to be significantly stiffer than what is observed in experiments.
In order to improve its ability to predict the behavior of materials, a variety of approaches
has been suggested: an explicit geometrical distribution of inhomogeneities was assumed
and introduced®, and secant and tangential moduli were employed to evaluate interactions
approximately by Doe?.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results

were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
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2. The averaging approach to multi-phase

elastoplastic composites

(1) Mori-Tanaka averaging in incremental form

a) 3D expression

Suppose that there are (N — 1) different types of ellipsoidal inhomogeneities distributed
in an infinite body where the N-th phase is the matrix. Let -, & and C denote the incremental
stress tensor, incremental strain tensor and tangential isotropic elastic tensor, respectively.
Since a virtual matrix introduced in the next section is an elastic body because, for exam-
ple, the Eshelby tensor can be easily evaluated, the matrix (N-th phase) is assumed to be
isotropically elastic, and the corresponding constitutive relation in rate form is expressed as

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
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In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell



stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

(2) Localization

a) Classical approachs

Then, based on the Mori-Tanaka approach, an approximate average constitutive relation
of the matrix can be assumed by
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was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.

b) Finite deformation

The strain field of the i-th inhomogeneity must include the interaction between the par-

ticular inhomogeneity and the surrounding matrix material, and can be written as
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Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
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defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
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was predicted by using the Truesdell stress rate and the convected stress rate, and the results
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practical order.



3. Experimental approaches

(1) Uniaxial case

a) Infinitesimal deformation

Then the equivalent inclusion method™ allows the following expression in the i-th inho-
mogeneity as

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.

Since this stress rate takes into account only the effect of finite rotation; i.e. spin during



motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in

practical order.



4. Concluding remarks

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation



was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

Finally, we can define the overall average incremental stress o and the corresponding

incremental strain € of the composite by simple volume averages as



APPENDIX A . Ductility

(1) In the case of ...

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be

defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
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updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an

updated Lagrangian measure.

(2) Incremental theory

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in

plane strain state, the predicted stresses of incipience of the localization by the Truesdell
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stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an
updated Lagrangian measure.

In order to compare the characteristics of the stress rates, localization of deformation
was predicted by using the Truesdell stress rate and the convected stress rate, and the results
were compared with those by the Jaumann stress rate of the Cauchy stress. However, in
plane strain state, the predicted stresses of incipience of the localization by the Truesdell
stress rate become close to the experimental critical stresses, Also, the orientations of the
localized deformation obtained by the Truesdell stress rate showed consistency with those
by the infinitesimal deformation theory, when the stress levels of the localization were in
practical order.

The Jaumann stress rate of the Cauchy stress is usually used to represent hypoelasticity.
Since this stress rate takes into account only the effect of finite rotation; i.e. spin during
motion, we here examined the effects of deformation rate terms which can be included in
the definitions of the stress rates. First we have shown that the Truesdell stress rate can be
defined as a rate of the 2nd Piola-Kirchhoff stress with the current state as reference; i.e. an

updated Lagrangian measure.
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Fig. 2 Second results
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