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Preface

This is a translated version of some parts of our lecture note “Basics of Mechanics of Structures and Continua (構
造と連続体の力学基礎)” written in Japanese. The Japanese edition is basically a collection of lecture notes used in
the classes we have offered for more than thirty years at the Department of Civil Engineering in Tohoku University,
and thus has more than 1,000 pages including references and indices. Although the word ‘Basics’ is put in the title,
the contents and explanations are more or less different from those of many standard Japanese textbooks of the
structural mechanics and the continuum mechanics in the civil engineering field. So, many friends of ours claim
that it is not appropriate to use in classes especially for undergraduate students, possibly because too mathematical
expressions are often employed in order to avoid some kinds of ambiguous or intuitive (so we think) statements
sometimes found in old textbooks. However, honestly speaking, please note that readers must be very careful
and may find many mistakes, because we are not so good at mathematics and English, Ha Ha Ha. This is one
of the reasons why this note has never been published. Also, this note is completely useless for those who are
going to take an entrance examination to a graduate school, and who are going to take an examination for public
service employment, because very few examples of solutions of actual boundary value problems are shown. In that
sense, this note is not suitable for undergraduate students who are going to learn the mechanics of structures and
continua for the first time, but can be referred to by graduate students who have studied such mechanics and have
had somewhat odd feelings or questions about what they have learned. Namely, the main purpose of this note is to
learn the straightforward formulations and the physical meanings of the theorems and the solution procedures.

When the first author was a student a long long time ago, one of the hot topics of research subjects in the
field of applied mechanics was the Finite Element Method. The virtual work principle plays the most important
role in formulation of this approximation scheme, and is an example of the inner products of functions applied
to mechanics. Also, the distributions such as the Dirac delta function and the Heaviside function quite useful in
mechanics are defined through some types of inner products with test functions. In that context, we realize that the
reciprocal theorems, the influence lines of responses of structures, the inverse problems, and so on are all based
on application of the inner products of functions. Therefore, we think that the virtual work expression is one of
the most important keys in the mechanics of deformable bodies, and we employ these kinds of inner products of
functions to express and explain mechanical concepts when necessary. It should be noted that the most important
and useful tool is not the energy principle but the virtual work principle.

This note is prepared by a famous typesetting software LATEX, but we keep the source closed. However, as is
declared at the colophon, any parts of this note can be copied, printed and used without any further notice to the
authors as long as the usage is non-commercial and limited for educational purposes. When such copies are to
be included in publications like a research paper and a textbook for college students, please put information of
the title, the authors and the URL of this note in the section of references. This document itself and some of our
softwares are found at

http://mechanics.civil.tohoku.ac.jp/bear/civil/node8.html and
http://mechanics.civil.tohoku.ac.jp/bear/bear-collections/.

Special thanks are due to Professors F. Nishino and S. Nemat-Nasser for supervisions of researches and educa-
tions at the University of Tokyo and Northwestern University. Finally, we wish to express our thanks to so many
people including our students at Tohoku University. Their names can be found in the Japanese edition.

TI & SK
Kagoshima & Nagano Japan, Sector 001

August 2023
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Chapter 9

Introduction to the Theory of Plasticity —
Rate-Independent Incremental Mechanics

9.1 Irreversible Deformation and 1-D Plastic Models

9.1.1 Irreversible Deformation and Fracture
(1) Plasticity and Ductile Fracture

After a straight wire is bent by hands, freeing it cannot recover its original shape. Moreover, the part bent becomes
relatively harder than the surrounding material, and it becomes very difficult to make it straight by any means.
Repeating the same process near the bent part may raise temperature around the deformed portion and finally
may lead to rupture. This kind of irreversible characteristics is in general called the inelasticity. Especially,
when the residual deformation is independent of time, it is called the plastic deformation. Existence of the
residual deformation indicates that some parts of the energy applied by bending are dissipated resulting in the rise
of temperature. Incidentally, when the residual deformation depends on time, the corresponding characteristics is
called the viscosity. Fig. 9.1 shows the schematic responses of several materials subjected to the stress path in the
left-most figure.

time time time time time

σ ϵ ϵ ϵ ϵ

viscosity
linear elasticity nonlinear elasticity plasticity

A B
A

B A B A B

A BC C C
C C

Fig. 9.1 Schematic stress-strain relations in elasticity, plasticity and viscosity

S

S

E

A

E

Fig. 9.2 Defect inside crystal structure

The theory of plasticity seems to be developed and rationally gen-
eralized especially for the crystalline metals. We here introduce such
mathematical models except in Secs. 9.4.2 and 9.4.3. Since such
crystalline metals are microscopically made of regular lattice struc-
tures with quite strong bonding forces, it may not be so easy to break
the bonds. However, as has been mentioned above for wires, the
irreversible deformation and the rupture become possible even by ap-
plication of human action, because there exist an infinite number of
defects inside the lattice structures. Lattice pattern in the left circular
inset of Fig. 9.2 shows a sight from A toward E of a typical structure
with a single defect depicted in the right part. This right part of the
figure illustrates a surface along the dotted curve in the left inset ob-
served from above. Suppose that a plane including black atoms is the
‘first floor,’ and that another plane with shaded atoms is the ‘second
floor,’ and two positions indexed by S are spiral staircases between these two floors. The defect at S is called the
screw dislocation, and the defect at E is called the edge dislocation. The line along the opening between two
S’s through E is called the dislocation line, and it can be observed as a black curve by the transmission electron
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A
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(c)(b)(a)

Fig. 9.3 Microscopic behaviors of 3 types of fracture

microscope (TEM). These dislocation lines move freely inside a crystal grain by application of the shear force,
and the direction of motion can be changed by reversing the applied force. However, once a dislocation reaches
the grain boundary or the free surface, it cannot move any more resulting in a new free surface. This creation of
the new surface generates some heat which corresponds to the dissipation of energy. This is one of the models to
explain the irreversible mechanism to create residual deformation.

Usually, one needs to repeat bending actions many times to break wires. Such characteristics of fracture of
materials depend on material properties of the ductility and the toughness etc. In general, the fracture of metal
materials is governed by the following properties:

brittleness: Brittle materials experience rupture almost without any deformation just like glasses. For
steel materials, this property becomes dominant under quite low-temperature environment.

toughness: It represents resistance ability against fracture in terms of energy.

ductility: Ductile materials experience large plastic deformation before rupture. The theory of plas-
ticity in this chapter mainly constructs mathematical models of these ductile materials.

difference between toughness and ductility: It should be noted that ductile materials do not always
have high toughness. The ductility usually represents ability of extension before fracture, while
the toughness is governed by some microscopic resistance against rupture near the defect in
terms of energy.

Three types of fracture are associated with these properties as follows:

brittle fracture: Deformation prior to fracture is negligibly small just like glasses. When a micro
crack AB exists inside a crystal grain as is shown in the upper-left figure of Fig. 9.3, if the
microscopic ductility near the crack tip is very low, this crack can easily extend without any
large deformation until fracture. In this case, almost no plastic deformation occurs along the
surface of cleavage which does not become so rough.

ductile fracture: If the similar crack has microscopic ductility near the tip to some extent, the exten-
sion of the crack may be obstructed by the plastic deformation. Therefore, as is shown in the
upper-left figure of Fig. 9.3, the corresponding failure develops with plastic deformation toward
C accompanied. On the other hand, in the region without crack, this fracture is considered to be
associated with the accumulation of the dislocations along the grain boundaries. The upper-right
figure of Fig. 9.3 illustrates three states of a lattice with one edge dislocation. In this figure, the
dislocation moves from left to right by applied forces. When it reaches the grain boundary as in
the rightmost figure, a new surface is created, and the dislocation cannot go back into the grain
resulting in the residual deformation. An infinite number of such dislocations are distributed in
each grain1 as is shown in the left figure (a) of Fig. 9.3 and can move almost freely. By increasing
the applied loads, many dislocations are gathered along the grain boundaries. Eventually, they
may become voids as is shown in figure (c). These voids may be one cause of the fracture which
is called the ductile fracture. Because of the large plastic deformation, the surfaces of rupture
become quite rough.

1 Dislocations are also distributed along the grain boundaries even in the initial state, but they are neglected in these figures.
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fatigue: Another type of fracture is called the fatigue. In its process until failure, cracks expand step-
by-step by, for example, the alternating application of forces. By the step-by-step development
of the crack, the cleavage surface usually has a stripe pattern which is called the clamshell mark
or the beach mark.

The mechanism of the brittle fracture and the fatigue is different from that of the ductile fracture, and it can be
studied in the fracture mechanics which is not included in this textbook, because it is quite difficult for us to
understand. Hahaha. Since, the strain may become larger than 10% in realistic metal forming processes, the finite
deformation theory must be used to simulate them. However, such a large deformation theory will be explained
later in Chap. 10, and we here concentrate on introductions of the major models of plasticity in the framework of
the infinitesimal deformation, because, first of all, it is important to understand their physical meanings.

(2) Experimental Observations

The simplest material tests like the uniaxial tensile test suggest several important knowledge about the plasticity
as follows.

1. The plastic deformation becomes significant at a certain level of the applied load under which the elasticity
prevails. Once the plastic state is reached, for example, at the point U of Fig. 9.4, release of the applied force
cannot let the specimen go back to the loading path, but a different path shown by a thick arrow is followed,
and the succeeding behavior is almost elastic. Namely, the stress-strain relations do not have one-to-one
correspondence, and there exist at least two possibilities on the incremental change of states at one same
specific stress level.

2. When the released load is again applied, the resistance is almost elastic as is indicated by a thin arrow in
the figure. Then the plastic deformation starts to increase near U. This implies that the plastic deformation
becomes significant not at a certain ‘strain’ level but at a certain ‘stress’ level.

3. Consecutive experience of plastic deformation mostly shows nonlinear behaviors, possibly because the mi-
croscopic structures inside the materials change step by step.

4. However, when a steel cube is submerged into the depths of the sea, its diameter shrinks because of the
isotropic hydrostatic pressure, but salvaging it retrieves the original size. This indicates that the plastic
deformation cannot be initialized by the isotropic loading (under the hydrostatic pressure or in the isotropic
stress state). Namely, the plastic deformation is essentially a shearing deformation and is closely related
to the shearing action.

5. When an elastic body which has experienced some plastic deformation to a certain direction is subjected to
an additional loading to the different direction, the stress level to start plastic deformation becomes smaller2

than that of the virgin material. This property is called the Bauschinger effect, and the corresponding model
will be explained in Sec. 9.4.1.

σ, ϵ

ϵO

σ

U

Fig. 9.4 History of tensile test

The lower curve in Fig. 9.4 illustrates a typical relation of so-called
mild steels. There exists a flat part which is sometimes called plateau
where the motion and the accumulation of many dislocations explained
by two figures (a) and (b) in Fig. 9.3 are considered to occur. Beyond this
flat part, the resistance becomes larger than that along the plateau. This
kind of hardening characteristics is due to immovability of many disloca-
tions near the grain boundaries shown in (b) of Fig. 9.3. This property is
the reason why, in the experiment of a wire, the bent part becomes harder
than the surrounding portion, and why it is almost impossible to restore
the original straight shape. Near the peak of this stress-strain relation,
the necking of the specimen starts to appear, and finally the debondings of the grain boundaries etc. in figure (c)
of Fig. 9.3 lead to the macroscopic slidings and the creation and coalescence of many voids. On the other hand,
the upper curve in Fig. 9.4 shows the response of the high strength steels. No explicit plateau appears because the
motion of the dislocations is restricted by small size of each grain and other schemes to increase the strength.

2 Inhomogeneities and microstructures inside materials may play an important role [39, 47].
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9.1.2 One-Dimensional Plasticity
(1) Basic Models

Within the framework of one-dimensional deformation, we first introduce how to describe the basic models of
plasticity basing on the observations in the previous section.

• First of all, we need to specify a criterion at which the plastic deformation starts. From the observation, this
condition must be given in terms of the stress level. Moreover, from the result in the item 4, not the isotropic
part but the shear part of the stress components governs the initiation of the plastic deformation. Therefore,
it seems to be straightforward to use the deviatoric stress tensor in Eq.(2.43).

• The item 1 indicates that there exists no one-to-one relation along the deformation history. Namely, at a
certain stress level, there are two possibilities of deformation; i.e. the plastic deformation can either continue
(loading case) or is suppressed (unloading case). These possibilities can be described by specifying several
different incremental behaviors at a given stress level. By such incremental models, the history dependence
and the global nonlinearity can be also included in the models. Therefore, the incremental relations between
stress and strain will be given later on as the evolution law (flow rule). In other words, it is essential to
specify the incremental relations to model plasticity.

O
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D

K F

σ

σ1

ϵ1

ϵ

Fig. 9.5 History under alternating load

The statements in the second item may be difficult to un-
derstand. Suppose that three types of the alternating load-
ing test are carried out as is shown in Fig. 9.5, where
A→B→C→D is the loading path of the test I. On the other
hand, the test II changes the path at A toward E, and, at ϵ1
which is the strain level at C of the test I, the loading direction
is reversed toward F. Moreover, G→H→K is the path of the
test III which is initially started in compression. Thus, there
exists no one-to-one stress-strain relation, and we have seven
different states A, B, E, D, F, H and K at the same stress level
of σ1. These behaviors can be at least described by the in-
cremental laws between the stress and the strain. However, if
they are integrable, the final states can be determined uniquely
by the initial states, and the history dependence cannot be re-
alized. Therefore, such incremental equations cannot be ana-
lytically integrated. Hence

∆ϵ = F(σ, ϵ)∆σ or dϵ = F(σ, ϵ) dσ −→× G(σ, ϵ) = 0,

i.e. a nonlinear relation like G(σ, ϵ) = 0 does not exist in the plasticity. In the numerical calculations, such
incremental relations are not integrated but are solved by an algebraic sum [20] of each increments. Several
explicit results of the history dependence are shown later in Sec. 9.3.3.

N

S

F
θ
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γp

Fig. 9.6 Friction and sliding

In addition to the conditions of initiation of the plastic deformation, we also
need the laws of evolution of the increments. These will be specified in the pro-
ceeding section, but we here employ a model of friction and sliding in Sec. 2.4.5 (2)
in order to explain their physical concepts. Fig. 9.6 depicts a body subjected to a
force F on a floor which has a coefficient of static friction µs. The body deforms
elastically, and the sliding may become possible when

f ≡ S − µs N = F (cos θ − µs sin θ) = 0, (9.1)

which corresponds to the criterion of initiation of the plastic deformation, and is
one form of the yield condition explained later on. Then, the sliding actually begins to occur when

∆ f > 0 (9.2)

by changes of the force or its orientation +α such as F → F ± ∆F, N → N ± ∆N, S → S ± ∆S , or θ → θ ± ∆θ.
This equation corresponds to the loading condition explained below. However, it should be noted that the direction
of motion is always along the floor or the direction of the shear force S as

∆
(
plastic sliding

) ≡ ∆γp = λ
S
|S | , namely ∆γp ∥ S , with λ = λ(F, S , θ,∆F,∆S ,∆θ), (9.3a, b, c)
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no matter what kinds of the changes are given. This law corresponds to the flow rule given below. The incremental
irreversible deformation ∆γp is accumulated to become the residual deformation γp in Fig. 9.6 which is kept
positive; i.e. λ > 0. The motion of the dislocations explained before seems to be interpreted by this kind of sliding
on the frictional floor.

(2) Rigid Perfectly-Plastic Body

τ, σ

O γ, ϵ

γ
τ

σ

τy

ϵ

σy

Fig. 9.7 Rigid perfectly-plastic
body

Although the plastic deformation is essentially the shear deformation, the stan-
dard uniaxial tensile test is usually used. However, if one observes this test from
another coordinate system as is shown in the lower right inset of Fig. 9.7, we
can understand that it measures partly the shearing resistance characteristics.
Since the elastic deformation is negligibly smaller than the plastic part as long
as the ultimate states of steels are concerned, the simplest model can neglect the
elastic part as Fig. 9.7. This material cannot resist against τ > τy > 0 and is
called the rigid perfectly-plastic body. In the structural mechanics, this model
is often employed to evaluate the ultimate strengths of the mild steel which has
the plateau in the stress-strain relation as is shown in Fig. 9.4. The action of
releasing loads is called the unloading.

From the initial state, any strain γ do not appear until the stress level reaches
τy, and this material parameter τy is called the yield stress. If the same yieldings occur in tension and compression,
the plastic deformation is considered to start to develop when

|τ| = τy, (9.4)

which is called the yield condition. In other words, when |τ| < τy, γ = 0 in the initial elastic state. On the other
hand, since the unloading is expressed by the change as ∆τ < 0 at the tensile stress level of τ = τy > 0, it can
be defined by τ · ∆τ < 0 in both tension and compression. Since this model neglects the elastic deformation, no
change of deformation occurs along the unloading path; i.e. ∆γ = 0. Eventually, including the elastic state, the
change of the strain can be specified by

∆γ = 0 if
{
|τ| < τy (Elastic state)
|τ| = τy and τ · ∆τ < 0 (Unloading state) . (9.5)

When the plastic deformation continues occurring under Eq.(9.4), the state is called the (plastic) loading. It
can be given by a condition as τ · ∆τ = 0 for the rigid perfectly-plastic body. Incidentally, it will be generalized by
τ · ∆τ ≥ 0 for the hardening case explained below. Therefore, the incremental change can be specified by

Sign of ∆γ = Sign of τ if |τ| = τy and τ · ∆τ = 0 (Loading state). (9.6)

So far, we establish no rule to determine ∆γ, but in problems of structures like those in Sec. 9.1.3, ∆γ may be
calculated by the solution of the boundary-value problem. These Eqs.(9.5) and (9.6) define the evolution laws.

(3) Elastic Perfectly-Plastic Body

τ

τy

O

µ µ

γ

Fig. 9.8 Elastic perfectly-
plastic body

When the elastic part is added into the rigid perfectly-plastic model like Fig. 9.8, it
is called the elastic perfectly-plastic body. In this case, we have

∆γ =
∆τ

µ
if


{
|τ| < τy

}
or{

|τ| = τy and τ · ∆τ < 0
} , (9.7a)

Sign of ∆γ = Sign of τ if
{
|τ| = τy and τ · ∆τ = 0

}
, (9.7b)

where µ denotes3 the shear modulus. Full description can be obtained as a special
case as H′ ≡ 0 of the model explained in the next section.

3 Instead of G, µ is used for the shear modulus in this chapter.
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(4) Elastic-Plastic Body

In general, after the initial yielding, the resistance increases as the plastic deformation becomes large. This phe-
nomenon is called the hardening. Just like the elastic perfectly-plastic body in the previous section, the total
incremental strain can be evaluated by the addition of the elastic and the plastic parts as

∆γ = ∆γe + ∆γp, (9.8)

where the superscripts ‘e’ and ‘p’ indicate the elastic and plastic parts respectively. As the most basic model of
elasticity, the incremental Hooke’s law as

∆γe =
∆τ

µ
(9.9)

can be employed. It should be noted that the strain γ is the engineering strain as will be explained later on. In the
loading state, the incremental plastic deformation can be estimated by the condition as

{
Sign of ∆γp = Sign of τ

}
which is the same as that of the perfectly-plastic body. Therefore, we can use a description similar to Eq.(9.3a) of
the friction and sliding model as

∆γp = λ
τ

|τ| , or, simply ∆γp = λ τ, λ > 0. (9.10a, b, c)

This relation is called the flow rule. It should be noted that no ∆ appears in the right-hand side. This new symbol λ
is not a material parameter4 but is a coefficient related to the incremental stress ∆τ. Finally, the elastic, unloading
and loading states can be specified by

λ = 0 if
{
|τ| < τy(γp)

}
or

{
|τ| = τy(γp) and τ · ∆τ < 0

}
, (9.11a)

λ > 0 if
{
|τ| = τy(γp) and τ · ∆τ ≥ 0

}
. (9.11b)

where the yield stress τy is expressed by a general function of the plastic deformation and its history as τy(γp), and
γp is some kind of accumulation (integration) of its increment ∆γp.

H′

γ

µµ

O

τ0

τ

Fig. 9.9 Elastic-plastic
body

Approximation by the deformation theory: In general, the additive rule in
Eq.(9.8) is valid only for the incremental relations, but so called the deformation
theory is established by an approximation that the additive description can be ap-
plied to the total strain components. This approximation may be acceptable in the
framework of the infinitesimal deformation without the unloading process. Thus,
the elastic part is given by

γe =
τ

µ
, (9.12)

and an additive rule as
γ = γe + γp (9.13)

is assumed to hold. From Fig. 9.9, since the tensile stress in the plastic states is related to the strain by

τ = τ0 + H′
(
γ − τ0

µ

)
, (9.14)

substituting it into Eqs.(9.12) and (9.13), we have

τ = τ0 +
H′

µ
τ + H′ γp − H′

µ
τ0,

or

τ = τ0 +

(
1

H′
− 1
µ

)−1

γp.

The right-hand side of this equation must coincide with τy(γp) defined above. Replacing γp by the integrated
quantity γp, we can express the yield function under a linear hardening rule as

τy(γp) = τ0 + H γp, H ≡ ∂τy
∂γp =

(
1

H′
− 1
µ

)−1

, (9.15a, b)

4 If λ is a material parameter, Eq.(9.10b) represents the viscous resistance. Also, λ is not the Lamé constant.
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where H expresses a degree of the hardening and is called the hardeningn coefficient. This equation is depicted
in Fig. 9.10. Therefore, the corresponding yield condition is given by

f (τ) ≡ |τ| − (
τ0 + H γp) = 0, (9.16)

where f (τ) is called the yield function. The parameter H′ has both elastic and plastic influences in the stress-
strain relation but is directly measurable in the simple tensile test. For most metal materials, we can approximate
as H ∼ H′ because H′ ≪ µ.

τy

τ0

O γp

H

1
H
=

1
H′
− 1
µ

Fig. 9.10 Example of yield stress in
deformation theory

A question is how we can determine the newly introduced parame-
ter λ in the incremental formulation not by the deformation theory. For
simplicity, let τ > 0. After the initial yielding, if the state keeps the
loading condition, the yield condition of Eq.(9.16) must be satisfied con-
secutively. Therefore, its change must be zero so that the increment of
Eq.(9.16) leads to

∆ f = ∆τ − H ∆γp = 0,

which is called the consistency condition. Substitution of Eq.(9.10b)
into the last term of this equation yields

λ =
∆τ

H τ
=
∆τ · τ
H τ2 → ∆γp =

τ · τ
H τ2∆τ =

τ · τ
H τ2
y

∆τ. (9.17a, b)

In loading state as τ · ∆τ > 0, since H′ is generally smaller than µ, we have H > 0. And thus, λ > 0 can
be guaranteed. We use a rather redundant expression in Eq.(9.17b) by multiplying τ to both denominator and
numerator in order to make this relation valid independently of the sign of τ. Also, it can be comparable to the
expression in three dimensions defined later on. Furthermore, τ2 in the denominator is replaced by τ2

y in the last
expression using the yield condition of Eq.(9.16).

9.1.3 Examples of Elastic Perfectly-Plastic Structural Members
(1) Truss Members

1 2

1

2

1/cos2 α

δ

1 + 2 cos3 α

1 + 2 cosαP

O

α α

ℓ

P, δ

N1

N2

N2

Fig. 9.11 Elastic-plastic behavior of three-member truss

Since the stress states of the beams are one di-
mensional, the elastic perfectly-plastic model
in this section may be applied to such struc-
tural members made of mild steels. Especially,
in the admissible stress design scheme, this
choice is reasonable because the tensile yield
stress is used as the tensile strength. As a typ-
ical example, we here employ the problem of
a truss explained in the reference [88]. Al-
though the plasticity has been explained bas-
ing on the shear resistance in the previous sec-
tions, we here consider one-dimensional nor-
mal stress states because the trusses are struc-
tures to resist only by the axial forces. More-
over, only a monotonic loading will be exam-
ined so that the description by the total de-
formation theory will be used in this section.
Namely, the elasticity is specified by σ = E ϵ
with the constant Young modulus E. Denote the tensile yield stress by σy instead of τy, and the yield strain is
defined by ϵy ≡

σy
E

.
When the three members in Fig. 9.11 have the same cross sectional area A, the governing equations are

Equilibrium equation: N1 + 2 N2 cosα = P:

Kinematical consistency condition: δ =
δ2

cosα
where δ2 is the extension of the diagonal member:

Constitutive law: N1 = EA
δ

ℓ
and N2 = EA

δ2
ℓ/cosα

in elastic state, and N1 = σy A, and N2 = σy A

after yielding.
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While they are in elastic states,

δ =
P ℓ
EA

1
1 + 2 cos3 α

,

and, we have

N1 =
P

1 + 2 cos3 α
> N2 =

P cos2 α

1 + 2 cos3 α
.

Therefore, the vertical member yields first when δ =
ℓ σy

E
. After that, we have a relation as

δ =
ℓ

2 EA cos3 α
(P − σy A) .

The diagonal members become plastic when

P = Pp ≡ Py (1 + 2 cosα) , δ =
ℓ σy

E cos2 α
,

after which δ becomes indeterminate. The history is shown in Fig. 9.11, where

P ≡ P
Aσy

=
P
Py
, δ ≡ δ E

ℓ σy
=

δ

ℓ ϵy
,

and Py ≡ Aσy expresses the initial yield axial force. One of the important results from this example is that the
ultimate load Pp is independent of the elastic property even in the statically indeterminate structure. This implies
that the ultimate loads can be evaluated even by the rigid perfectly-plastic model. Therefore, the limit analysis in
Sec. 9.5 may play an important role in the actual ultimate design process.

(2) Bending Members — Moment-Curvature Relation

b

h

σy

−σy

zy

−σy −σy

σy σy

(a) My (b) (c) Mp
Fig. 9.12 Bending stress in elastic-plastic state

In the case of the bending, the beam theory assumes that the
axial strain is given by a linear function of the vertical co-
ordinate. Therefore, if it holds until the collapse, the corre-
sponding stress distribution has three types as are shown in
Fig. 9.12 for the rectangular cross section. Figure (a) repre-
sents the initial yielding state. After the initial yield, only the
part in |z| < zy of figure (b) is in elastic state. In the ultimate
state, the stress reaches the yield stress all over the cross sec-
tion in figure (c). In the elastic stage, the relation between the
bending moment M and the curvature ϕ is given by

M = EI ϕ, σe =
M
We

, We ≡
I

h/2
,

where σe denotes the stress at the extreme fiber of the section, and We is the section modulus. When σe becomes
the yield stress in figure (a), the corresponding bending moment My is called the yield moment and is evaluated
by

My ≡ We σy = EI ϕy =
bh2

6
σy, ϕy ≡

2σy
Eh

, (9.18a, b)

where ϕy expresses the curvature at the initial yielding. Then, in the elastic-plastic state of figure (b), we have

M = My

3
2
− 1

2

(
ϕy
ϕ

)2
 , zy =

σy
E ϕ
=

h
2
ϕy
ϕ
.

Finally, in the ultimate state, the curvature becomes infinity; i.e. ϕ→ ∞, and the bending moment becomes

M → Mp =
bh2

4
σy =

3
2

My. (9.19)

This Mp is called the plastic moment, and again, it is independent of the elastic characteristics.
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Fig. 9.13 Three-point bending of simple beam
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Fig. 9.14 Elastic-plastic behavior of simple beam

(3) Bending of Simple Beam

As a simple example, we here examine a simply supported beam subjected to a load at the center in Fig. 9.13. The
central section yields first, and the plastic deformation develops in some parts5 of each section in the range indexed

by a in this figure. When P > Py, the elastic region of each section in
ℓ − a

2
< x <

ℓ

2
can be estimated as

zy = h

√
3
4
− P

Py

x
ℓ
, Py ≡

4 My
ℓ

,
a
ℓ
= 1 − Py

P
. (9.20a, b, c)

The deflection at the center w(ℓ/2) can be evaluated by the integration of the curvature as w (ℓ/2) =
∫ ℓ/2

0
ϕ(η) η dη to

obtain

w =
1

P
2

{
5 −

(
P + 3

) √
3 − 2 P

}
,

where

w ≡ w(ℓ/2)
δy

, δy ≡
My ℓ2

12 EI
, P ≡ P

Py
,

and δy and Py express the deflection of the central section and the applied load at the initial yielding respectively.
As is clear from the expression inside the square root above, we can have a unique solution only when

P ≤ Pp ≡
3
2

Py =
4 Mp

ℓ
. (9.21)

At P = Pp, we have z0 ≡ zy(ℓ/2) → 0, i.e. the entire section at the center becomes plastic, and the beam cannot
carry any larger load. Since the curvature becomes infinity, the beam is folded at the center; i.e. we consider that
there emerged a hinge which is called the plastic hinge. However, it should be noted that the resisting moment is
not zero but Mp. The corresponding elastic-plastic behavior is summarized in Fig. 9.14.

It is true that the shear stress is also formulated within the beam theory. But, since it becomes significant near
the neutral axis, and its magnitude is much smaller than that of the bending stress, the effect of the shear stress is
usually neglected even in design processes. By the three-dimensional analysis of a cantilever beam in Fig. 10.49,
we will show one numerical result the plastic region of which is similar to that of Fig. 9.13.

Exercises 9-1

1. Solve the truss and the beam in this section by yourself, and draw Figs. 9.11, 9.13 and 9.14.
5 The shape of the plastic region is almost triangular but is exaggerated by a shaded area in Fig. 9.13.
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9.2 Generalization to 3-D Plasticity

9.2.1 Yield Condition — Definitions of States

As the most basic model of plasticity, we start with formulation of the Prandtl-Reuss model. Only a spatially
fixed rectangular Cartesian coordinate system is used. First, the total incremental strain is decomposed into the
elastic and plastic parts like Eq.(9.8). Let ϵ̇p and ϵ̇e denote the plastic and elastic parts of the incremental strain
respectively, and the total incremental strain can be given by6

ϵ̇i j = ϵ̇
e
i j + ϵ̇

p
i j =

1
2

(
u̇i, j + u̇ j,i

)
or dϵi j = dϵe

i j + dϵp
i j =

1
2

(
∂ dui

∂x j
+
∂ du j

∂xi

)
as a total differential expression.

(9.22a, b)
Hereafter, we use the superscript dot to define the increment in place of ∆ and differential d. Therefore, u̇ is the
incremental displacement; i.e.

u̇ ∼ ∆u ∼ du, u̇ ≡ ∂u
∂t
,

where t denotes a ‘monotonically increasing non-dimensional parameter to represent the deformation history,’
because the plastic deformation is defined as an irreversible deformation independent of the actual time. As is
clear from Eq.(9.22), the total incremental strain is compatible with respect to the incremental displacement just
like Eq.(2.16). However, it should be noted that both the elastic part and the plastic part are incompatible. It
is quite natural because the plastic deformation is physically related to the dislocations which are local defects
inside materials and are gaps as depicted in Fig. 2.43. The corresponding elastic incremental strain is necessary to
compensate these gaps in a continuum and thus is also incompatible.

As has been mentioned above in the section of the experimental observations, the metal materials like steels
experience no plastic deformation under the hydrostatic pressure. This implies that the plastic characteristics are
related to the shear deformation and the shear resistance. Moreover, since the residual deformation is accumulated
during the loading history, it is not appropriate to use the deformation or the strain to define the yield condition.
Therefore, one of the most proper candidates to describe the yield condition is the deviatoric stress defined by
Eq.(2.43). Furthermore, since the yield condition must be independent of the choice of the coordinate system (at
least for the isotropic materials), not the components of the deviatoric stress but its principal values or its invariants
must be employed. Similarly to the definition of the stress invariants in Eq.(2.36), we can define the invariants of
the deviatoric stress by

J1 ≡ σ′kk = 0, σ2 ≡ J2 ≡
1
2
σ′i j σ

′
ji, J3 ≡ det

(
σ′

)
. (9.23a, b, c)

Note that the sign of J2 is different from that of the second stress invariant I2. Let s denote the principal deviatoric
stress, and it must satisfy the following equation;

s3 − J2 s − J3 = 0.

Solving this cubic equation, we obtain the principal deviatoric stresses as

si = 2

√
J2

3
cos θs, sii = 2

√
J2

3
cos

(
θs −

2π
3

)
, siii = 2

√
J2

3
cos

(
θs +

2π
3

)
, (9.24a, b, c)

where θs is given by

cos 3θs =
3
√

3 J3

2 J
3
2
2

, 0 ≤ θs ≤
π

3
, (9.25a, b)

and can be related to the Lode angle in Eq.(9.58a) explained later. Note that si + sii + siii = 0. We can specify two
types of the yield function using these scalar quantities as follows:

• The yielding starts when the maximum principal deviatoric stress reaches some specified level. This corre-
sponds to the Tresca yield condition explained later. However, since the principal deviatoric stresses can be
expressed by J2 and J3 from Eqs.(9.24) and (9.25), this definition can be considered as a special case of the
next condition.

6 After this section through the end of this note, we use the notation in the tensor analysis. If a reader is not familiar with it, App. D may be
helpful.
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• As the most general expression, the yielding is considered to start when

f (J2, J3) = 0

is satisfied. The simplest one is the Mises yield condition explained below.

The Mises condition is specified by using J2 only. We can interpret the expression of the right-hand side of
Eq.(9.23b) as one kind of norm in six dimensions extended from the norm in the Euclidian geometry. Then σ can
be considered as a magnitude or a norm of the 6-dimensional deviatoric stress space. For example, in a simple
shear state in x1-x2 plane, only σ12 = σ21 are non-zero, and Eq.(9.23b) results in σ = |σ12| suggesting that σ
represents the shearing resistance. In this textbook, σ is called the effective stress. Therefore, the yield condition
is defined by

f (σ, ϵp) ≡ σ − τy(ϵp) → f = 0. (9.26a, b)

Explicit forms in terms of the stresses are given in Eqs.(9.53) and (9.54). Elastic state is defined by f < 0, while
the state f > 0 is inadmissible. This condition is called the Mises yield condition. The function f is the yield
function, and τy is the shearing yield stress. This yield stress τy is here expressed as a function of a special scalar
quantity ϵp in order to show that the plastic deformation depends on the loading history. The new quantity ϵp is
often defined by an expression similar to the effective stress as

ϵ̇
p ≡

√
2 ϵ̇p

i j ϵ̇
p
ji, or ϵp ≡

∫
history

√
2 ϵ̇p

i j ϵ̇
p
ji dt, (9.27a, b)

so that the work with ϵ̇
p

done by the effective stress σmust have a clear physical meaning of the incremental plastic
work. This quantity ϵp is called the effective plastic strain or the accumulated plastic strain7 in this textbook. It
should be noted that this effective plastic strain is twice the ordinary shearing component of the strain tensor; i.e.
it is the engineering strain which corresponds to γ of the one-dimensional case in the previous section. Although
the term ‘work-hardening’ is commonly used to characterize the hardening, the yield stress τy is here expressed by
a function of the effective plastic strain in place of the plastic work.

A B

C

σa < τy

σc < τy

σb = τy

σ

σ

Fig. 9.15 Yield condition — only the slip-
system B becomes active to start
plastic deformation

On the other hand, the uniaxial tensile test is usually employed for
the element test of steels in which the normal stress component σ11
is measured. Then, the effective stress of Eq.(9.23b) becomes σ2

=
1/3 (σ11)2, and the corresponding yield condition results in |σ11| =√

3 τy. From this equation, the tensile yield stress σy can be defined
by the shearing yield stress as

σy =
√

3 τy (Mises).8 (9.28)

Therefore, in place of Eqs.(9.23b) and (9.26), the yield function is
often defined by

f ≡ σ̃ − σy(ϵ̃p), σ̃2 ≡ 3
2
σ′i j σ

′
ji = 3σ2, (9.29a, b)

where σ̃ is also called the effective stress. When this version of the
effective stress is used, the accumulated plastic strain in Eq.(9.27b) must be replaced by

ϵ̃p ≡
∫

history

√
2
3
ϵ̇

p
i j ϵ̇

p
ji dt, (9.30)

in order to have a physically appropriate meaning in the incremental plastic work of Eq.(9.35). This parameter is
also called the effective plastic strain. Although σ̃ and ϵ̃p are employed in many references, we here use σ and ϵp

in this textbook, because the plasticity is essentially related to the shearing phenomenon.
In the context above, the plastic deformation after the initial yielding may be modeled by an irreversible mi-

croscopic sliding inside materials. For example, when there exist three different slip planes in a body as is shown
in Fig. 9.15, one particular combination of stress components releases the friction on one particular slip plane9

7 It is not a common term but is used only by us.
8 The shear strength specified in the ‘Specifications for Highway Bridges [123]’ is defined by this relation.
9 In the case of crystalline metals, these planes coincide with the close-packed planes of atoms.
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(indexed by B in the figure) along which sliding10 is activated. Namely, the choice of the active slip plane depends
on the combination of the stress components and the orientation of the plane. Hence, the yield condition must be
specified by the stress not by the deformation. As has been explained in Sec. 2.4.5 (2), the direction of the sliding
and the increment of the slip motion are governed by the orientation of this slip plane and the combination of the
stress components. This property is completely different from the elastic characteristics.

A

B C

Fig. 9.16 Face-centered cubic crystal and sliding planes

The microscopic mechanism of the
sliding is here explained for the face-
centered cubic crystal in Fig. 9.16. The
left figure shows the structure of atoms,
and the slip planes indicated by shading in
the right figure are considered to be four
close-packed planes on which the sliding
is likely to occur or the dislocations can
move easily. The directions of sliding on
this ABC plane are indexed by the three ar-
rows AB, BC and CA (and their opposite
directions). Totally, ±3 directions times 4
planes yield 24 possibilities of sliding. In
other words, this microstructure permits sliding only to these directions on these planes. And, at least one sliding
becomes active when the stress state satisfies the condition of Eq.(9.26b).

Photo 9.1 Triaxial com-
pression test

Incidentally, in Sec. 2.4.2 (1), the triaxial compression test of Photo 9.1 has
been examined to explain that Eq.(2.54) expresses the shearing resistance. Since
the macroscopic stress state can be given by

σ11 = σa, σ22 = σ33 = σc,

the effective stress is evaluated as

σ′11 =
2
3

(σa − σc) , σ′22 = σ
′
33 = −

1
3

(σa − σc) → σ =
1
√

3
|σa − σc| ,

and this deviator stress (σa −σc) represents the shearing resistance of the foundation
materials. If the elastic strain can be neglected, and if the principal strain increments
is measured as

ϵ̇
p
11 = ϵ̇a, ϵ̇

p
22 = ϵ̇

p
33 = ϵ̇l,

the effective plastic strain increment of Eq.(9.27b) becomes

ϵ̇
p
=

2
√

3
|ϵ̇a − ϵ̇l| =

1
√

3

∣∣∣3ϵ̇a − ∆̇p
∣∣∣ ,

where ∆̇p is the plastic volumetric strain increment defined by

∆̇p ≡ ϵ̇p
ii = ϵ̇a + 2ϵ̇l.

Namely, the uniaxial compression tests in the soil mechanics and the foundation engineering essentially evaluate
the characteristics of the shearing resistance.

9.2.2 Flow Rule — Evolution Rule of Deformation
At the stress level where the yield condition is satisfied, there exist two different deformation paths, one of which
is the loading path with continuous plastic deformation, and another of which is the unloading path with almost no
plastic deformation. Unloading is usually modeled by the Hooke elasticity. On the other hand, since the loading
has history-dependence, the incremental strain is often related to the stress. Such approaches are called the flow
theory or the incremental theory. Then, the final form of the constitutive laws are described by the relations
between the incremental stress and the incremental strain. Such laws are called the flow rules or the evolution
rules.

The development of the basic flow rule is described in the famous reference by Hill [29] as
10 The defect called dislocation starts to move on that plane.
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In 1870, Saint-Venant proposed that

(Principal axis of ϵ̇) ∥ (Principal axis of σ),

as one insight. Then, Lèvy (1871) and Mises (1913) suggested that

ϵ̇xx

σ′xx
=
ϵ̇yy

σ′yy
= · · · =

ϵ̇xy

σ′xy
.

Basing on these ideas, Prandtl (1924) and Reuss (1930) decomposed the total strain into the elastic
and plastic parts, and assumed

ϵ̇
p
xx

σ′xx
=
ϵ̇

p
yy

σ′yy
= · · · =

ϵ̇
p
xy

σ′xy
= constant ratio = λpr → ϵ̇

p
i j = λpr σ

′
i j, λpr ≥ 0,

(9.31a, b, c)
which is called the Prandtl-Reuss equation.

Namely, the increment of the residual (plastic) deformation ϵ̇p is parallel to the deviatoric stress σ′ not to its
increment. Comparing this flow rule of Eq.(9.31b) with the sliding rule of Eq.(9.3) on the frictional floor, the plastic
deformation can be interpreted as the shear part because the deviatoric stress is physically the shear resistance.
Although Eq.(9.31b) is similar to the constitutive law of viscosity, the symbol λpr is not a material (viscous)
constant but a parameter depending on the stress state and its increment. Actually, substitution of Eq.(9.31b) into
Eq.(9.27b) with Eq.(9.23b) results in

ϵ̇
p
=

√
2 ϵ̇p

i j ϵ̇
p
ji = λpr

√
2σ′i j σ

′
ji = 2 λpr σ → λpr =

ϵ̇
p

2σ
. (9.32)

This is the physical meaning of λpr.
Eq.(9.31b) implies that the plasticity is completely different from the elasticity. Saint-Venant’s description

above states that the incremental shear strain keeps coaxial with the deviatoric stress not its increment; i.e.

∆̇p ≡ 0, ϵ̇p ∥ σ′ (9.33a, b)

(coaxiality), while, from Eqs.(2.44) and (2.45), the elastic strain and its increment are coaxial with the stress and
its increment respectively; i.e.

∆e ∝ σave, ϵe′ ∥ σ′; ∆̇e ∝ σ̇ave, ϵ̇e′ ∥ σ̇′,

where ∆e and ∆p denote the elastic and plastic parts of the volumetric strain defined by Eq.(2.14) respectively, and
σave is the average stress of Eq.(2.42). In other words, both the direction and the magnitude of the incremental
elastic strain are directly related the incremental stress, but the direction of the incremental plastic strain is governed
by the stress itself while its magnitude is influenced by the stress as well as its increment.

B B

σ̇

σ̇

σ̇

σ̇

ξ ξ

η η

ϵ̇
p
ξη = 0 ϵ̇

p
ξη > 0

Fig. 9.17 Flow rule — sliding orientation ξ-η
is determined by stress state σ

Just like the explanation given for Fig. 9.15, once the yield
condition is satisfied on one particular plane, the direction of the
plastic slip has been already determined along this plane. Further
loading yields the slip11 only on the same plane. Therefore, the
direction of the incremental deformation is determined by the di-
rection of the slip planes which is governed by the stress state.
This is a physical meaning of the flow rule. However, at the same
time, the magnitude of the incremental slip is influenced by the
incremental stress as is shown in Fig. 9.17, and it will be explic-
itly expressed by Eq.(9.38a) later on.

Since the metal hardening is often called the work hardening,
we here define the rate of plastic work and consider a physical
meaning of the coaxiality above. We can define it by a work of
the stress with the incremental plastic strain as

ẇp ≡ σi j ϵ̇
p
i j. (9.34)

11 No plastic volumetric deformation occurs in the crystalline metals because the dislocations move on the close-packed crystal planes. On
the other hand, it is well known that there occur some plastic volumetric strains called the dilatancy in the foundation materials made of
many grains.
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Substituting the flow rule of Eq.(9.31b) into Eq.(9.34), we can express the rate of work in terms of σ of Eq.(9.23b)
or σ̃ of Eq.(9.29b) as

ẇp = σi j ϵ̇
p
i j = 2 λpr σ2

=
2
3
λpr σ̃

2.

On the other hand, the two kinds of the effective plastic strain in Eqs.(9.27b) and (9.30) can be rewritten by using
the flow rule in Eq.(9.31b) as

ϵ̇
p
=

√
2 ϵ̇p

i j ϵ̇
p
ji = λpr

√
2σ′i j σ

′
ji = 2 λpr σ, ˙̃ϵp

=

√
2
3
ϵ̇

p
i j ϵ̇

p
ji = λpr

√
2
3
σ′i j σ

′
ji =

2
3
λpr σ̃.

Then, substitution of the expressions of λpr into the two expressions of the rate of work above results in

ẇp = σi j ϵ̇
p
i j = σ ϵ̇

p
= σ̃ ˙̃ϵp

, (9.35)

which shows that the inner products of the two corresponding tensors are evaluated by the products of their norms
only. This is another expression of the coaxiality; i.e. the directions of the two tensors are the same.

We have shown that σ in Eq.(9.23b) essentially represents a shear stress, and that σ̃ in Eq.(9.29b) is an uniaxial

stress. Similarly, when the plastic state is in pure shear as ϵ̇p
12 = ϵ̇

p
21 =

γ̇0

2
> 0, ϵ̇

p
of Eq.(9.27b) becomes

ϵ̇
p
=

√
2 ϵ̇p

i j ϵ̇
p
ji =

√
4

(
ϵ̇

p
12

)2
= |γ̇0| ,

which is a component of the engineering shear strain. Also, when σ11 = σ0 in a certain plastic state, the flow rule
of (9.31b) yields

ϵ̇
p
11 =

2
3
λpr σ0, ϵ̇

p
22 = ϵ̇

p
33 = −

1
3
λpr σ0 → ϵ̇

p
11 = ϵ̇0 > 0, ϵ̇

p
22 = ϵ̇

p
33 = −

1
2
ϵ̇0.

Therefore, ˙̃ϵp of Eq.(9.30) becomes

˙̃ϵp
=

√
2
3
ϵ̇

p
i j ϵ̇

p
ji =

√
2
3

(
3
2
ϵ̇2

0

)
= |ϵ̇0| .

From these relations, the physical meanings of the two kinds of the effective plastic strain and the rate of plastic
work become very clear.

9.2.3 Incremental Constitutive Equations
In the loading state undergoing continuous plastic deformation, the yield condition f = 0 must be kept satisfied.
In other words, f does not change during the loading process, and it can be expressed by

ḟ = 0, (9.36)

which is called the consistency condition. When f is given by the Mises criterion of Eq.(9.26a), this condition
yields

ḟ =
∂σ

∂σi j
σ̇i j −

∂τy(ϵp)
∂ϵp ϵ̇

p
=

∂σ

∂σi j
σ̇i j −

∂τy(ϵp)
∂ϵp

√
2 ϵ̇p

i j ϵ̇
p
i j = 0.

Then, substituting Eq.(9.31b) into the last equation, and knowing

∂σ

∂σi j
=
σ′i j

2σ
(9.37)

from Eq.(9.23b), we can rewrite the consistency condition above as

ḟ =
∂σ

∂σi j
σ̇i j −

∂τy(ϵp)
∂ϵp λpr

√
2σ′i j σ

′
i j =

σ′kl

2σ
σ̇kl −

∂τy(ϵp)
∂ϵp λpr 2σ = 0,

from which λpr can be evaluated by

λpr =
1
H

σ′kl

4σ2 σ̇kl, H ≡ ∂τy(ϵp)
∂ϵp , (9.38a, b)
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where H is called the hardening coefficient. Putting this expression back into Eq.(9.31b), the incremental plastic
strain can be related to the incremental stress as

ϵ̇
p
i j =

1
H

σ′i j σ
′
kl

4σ2 σ̇kl. (9.39)

This expression formally coincides with Eq.(9.17b) in one-dimensional case. Since the plastic volumetric defor-
mation is zero

(
ϵ̇

p
kk ≡ 0

)
as has been assumed, the plastic deformation has incompressibility.

The loading/unloading conditions have been defined by the sign of (τ · ∆τ) in one dimensional case. In three
dimensions, in the case of hardening H > 0, the loading can be specified by λpr > 0 in Eq.(9.38a) or equivalently
by

(
σ′i j σ̇i j > 0

)
. Therefore, we can define the five states as follows:

elastic (loading): λpr = 0 if f < 0 (9.40a)
(elastic) unloading: λpr = 0 if f = 0 and σ′i j σ̇i j < 0 (9.40b)

neutral loading: λpr = 0 if f = 0 and σ′i j σ̇i j = 0 (9.40c)
(plastic) loading: λpr > 0 if f = 0 and σ′i j σ̇i j > 0 (9.40d)

inadmissible: f > 0. (9.40e)

The neutral loading represents a state when the stress state satisfying the yield condition changes without any
further plastic deformation. The criterion

(
σ′i j σ̇i j > 0

)
of the loading state represents positiveness of an inner

product of the two tensors; i.e. the difference of the directions of the deviatoric stress and the incremental stress is
less than 90 degrees or possibly the same (explained later). On the other hand, the elastic constitutive law may be
obtained from the generalized Hooke’s law of Eq.(2.105b) by replacing the inelastic strain ϵ∗ by the plastic strain
ϵp. But, remembering that the incremental plastic strain ϵ̇p is not integrable, and that the deformation theory is an
approximate model, we cannot use Eq.(2.105b) directly. This implies that we have to construct a constitutive model
in the incremental form using the additive decomposition in Eq.(9.22). Then, taking the increment of Eq.(2.105b),
we can specify the incremental Hooke’s law as

σ̇i j = Ci jkl

(
ϵ̇kl − ϵ̇p

kl

)
= Ci jkl ϵ̇

e
kl. (9.41)

Also, the inverse relation is obtained from Eq.(2.59) as

ϵ̇e
i j = Di jkl σ̇kl =

1
2µ

σ̇i j +
1
3

(
1

3K
− 1

2µ

)
δi j σ̇kk. (9.42)

Consequently, substitution of Eqs.(9.39) and (9.42) into Eq.(9.22) results in the elastic-plastic incremental consti-
tutive law as

ϵ̇i j =
1

2µ
σ̇i j +

1
3

(
1

3K
− 1

2µ

)
δi j σ̇kk +

1
H

σ′i j σ
′
kl

4σ2 σ̇kl. (9.43)

Here, you may ask why the plasticity is modeled in the incremental form. One of the reasons is that there exist
different paths like the loading and the unloading at one particular plastic state. But the most important reason is
the history-dependency of the plastic deformation. So that the flow rule is not integrable. When the velocities in
Eq.(9.39) are replaced by the differentials, the flow rule can be written as

dϵp
i j =

1
H

σ′i j σ
′
kl

4σ2 dσkl.

For example, a component dϵp
11 can be expanded as follows

dϵp
11 = F1 dσ11 + F2 dσ22 + F3 dσ33 + F4 dσ23 + F5 dσ31 + F6 dσ12. (a)

Then, several tedious steps of manipulation arrive at relations like

∂F1

∂σ22
,

∂F2

∂σ11
,

∂F2

∂σ23
,

∂F4

∂σ22
, · · · , (9.44a, b)

implying that Eq.(a) above does not have the total differential form and is not integrable. Namely, the plastic
strain cannot be explicitly defined while its increment is defined. Thus, the plastic strain can be calculated only
numerically by the algebraic sum of sufficiently small increment; i.e.

ϵp ≡×
∫

history
dϵp =

∫
history

ϵ̇p dt ⇒ ϵp ≡
∑

history

∆ϵp =
∑

history

ϵ̇p. (9.45a, b)
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Therefore, the relation obtained from formal integration of Eq.(9.22) like

ϵ = ϵe + ϵp [inappropriate equation]

cannot hold and is an approximate relation of the deformation theory.

Standard and physical derivation of inverse relation: We also need the inverse relation of Eq.(9.43). First,
letting i equal to j in Eq.(9.43), and taking a sum12 from 1 to 3, we have

ϵ̇ii =
1

2µ
σ̇ii +

1
3

(
1

3K
− 1

2µ

)
δii σ̇kk =

1
3K

σ̇kk,

from which the average incremental stress can be expressed by

σ̇kk = 3K ϵ̇kk. (b)

Since the plastic deformation has no volumetric change, this relation includes only the elastic part. Next, multiply-
ing Eq.(9.43) by σ′i j, and taking a sum for i and j from 1 to 3, we can evaluate the incremental work as

σ′i j ϵ̇i j =
1

2µ
σ′i j σ̇i j +

1
H

σ′i j σ
′
i j

4σ2 σ′kl σ̇kl.

Substitution of the definition of σ into the second term of Eq.(9.23b) leads to

σ′i j ϵ̇i j =
1

2µ
σ′i j σ̇i j +

1
2H

σ′kl σ̇kl =
µ + H
2 µH

σ′i j σ̇i j,

or
σ′i j σ̇i j =

2 µH
µ + H

σ′i j ϵ̇i j. (c)

Substituting Eqs.(b) and (c) back into the right-hand side of Eq.(9.43), we have the incremental stress only in the
first term of the right-hand side. Eventually, we arrive at the elastic-plastic incremental constitutive law as

σ̇i j = 2 µ ϵ̇i j +

(
K − 2 µ

3

)
δi j ϵ̇kk −

µ2

µ + H

σ′i j σ
′
kl

σ2 ϵ̇kl. (9.46)

Using the isotropic elastic tensor C in Eq.(2.56), we can rewrite it as

σ̇i j = Ci jkl ϵ̇kl −
µ2

µ + H

σ′i j σ
′
kl

σ2 ϵ̇kl. (9.47)

As will be explained later on, the term
µH
µ + H

corresponds to the hardening parameter H′ including the elastic

property in Fig. 9.9. Also, using the elastic compliance in Eq.(2.58), we can rewrite Eq.(9.43) as

ϵ̇i j = Di jkl σ̇kl +
1
H

σ′i j σ
′
kl

4σ2 σ̇kl. (9.48)

Moreover, we can define the elastic-plastic tangent modulus and the corresponding tangent compliance by

Cep
i jkl ≡ Ci jkl − χ

µ2

µ + H

σ′i j σ
′
kl

σ2 , Dep
i jkl ≡ Di jkl +

χ

H

σ′i j σ
′
kl

4σ2 , (9.49a, b)

to express the incremental constitutive laws by

σ̇i j = Cep
i jkl ϵ̇kl, ϵ̇i j = Dep

i jkl σ̇kl, (9.50a, b)

where χ is a switch to distinguish the loading/unloading states as

χ =

{
0 for elastic, unloading or neutral loading
1 for loading . (9.51)

12 This manipulation is called the (static) condensation, and its physical meaning is the incremental volumetric deformation.
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Element tests and hardening coefficient: The hardening coefficient H must be determined by some element
tests, among which the standard uniaxial tensile test is the basic one. In the stress state at σ11 = σ0, Eq.(9.43)
becomes

ϵ̇11 =
1
E
σ̇0 +

1
3H

σ̇0 =
1
Et
σ̇0,

where E is Young’s modulus, and Et denotes the tangent modulus of the uniaxial stress-strain curve which can be
directly measured by the test. Therefore, we have

1
3H
=

1
Et
− 1

E
→ 3H =

Et

1 − Et

E

.

3H represents the tangential coefficient of the relation between the tensile stress and the plastic extensional strain,
and the number ‘3’ comes from ‘

√
3’ in σ̃ and ϵ̃p.

If some proper shear tests are available, the corresponding stress state as σ12 = τ0 yields

γ̇12 = 2ϵ̇12 =
1
µ
τ̇0 +

1
H
τ̇0 =

1
H′

τ̇0,

where H′ is the tangential coefficient between the shear stress and the engineering strain. Hence, we obtain

1
H
=

1
H′
− 1
µ
→ H =

H′

1 − H′

µ

,

which is consistent with the hardening coefficient in Eq.(9.15b) of the deformation theory for one-dimensional
case. In general, the hardening has nonlinear characteristics, and such cases are often modeled by the power law
explained later in Sec. 9.4.4.

Exercises 9-2

2. Define an apparent elastic-plastic Poisson’s ratio from Eq.(9.49), and discuss about the tangential incom-
pressibility. Hint: Eq.(2.84).

9.3 Generalized Elastic-Plastic Constitutive Equations

9.3.1 Yield Surface and Normality Rule
(1) Yield Functions

σii

σiii

σi

O

π plane e =


1/√3
1/√3
1/√3



Fig. 9.18 π plane and Mises yield condition

We here introduce the generalized Prandtl-Reuss constitu-
tive equation using a generalized yield function of the form
f = f (J2, J3, · · ·). The yield condition f = 0 represents a sur-
face in the 6 dimensional stress space, and thus the surface is
sometimes called the yield surface.

Mises yield condition: The Mises yield condition intro-
duced in the previous section can be rewritten by

f = f (J2, history) =
√

J2 − τy(history) = 0. (9.52)

The second invariant of the deviatoric stress J2 can be ex-
pressed by the stress components as

J2 =
1
6

{
(σ22 − σ33)2 + (σ33 − σ11)2 + (σ11 − σ22)2

}
+ σ2

23 + σ
2
31 + σ

2
12, (9.53)

and the yield condition is written in terms of the principal stresses as

f =

√
1
6

{
(σii − σiii)2 + (σiii − σi)2 + (σi − σii)2

}
− τy = 0. (9.54)
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This condition can be represented by a circular cylinder in the principal stress space as is shown in Fig. 9.18. The
axis of the cylinder is oriented to a unit vector e along which σi = σii = σiii is satisfied (axis of hydrostatic pressure
or isotropic stress), because no plastic deformation occurs13 under the isotropic stress state. The plane the normal
of which is e is called the π-plane.

σiii − σii

σi − σii
O

√
3τy

2τy

A

B

σiii − σii

σi − σii
O √

3τy

Fig. 9.19 Mises (elliptical) and Tresca (hexagonal) yield loci

Tresca yield condition: An-
other condition can be specified
by a criterion in which yield oc-
curs when the maximum shear
stress reaches a certain level. Es-
pecially for the single crystal in
Fig. 9.16, since the plastic defor-
mation is supposed to develop on
some slip planes determined by
the crystal structure, this maxi-
mum shear stress criterion may
be appropriate to use. Moreover,
because there exist only a small
number of such planes, the yield surface may have corners just like in Fig. 10.22. As has been explained about the
Mohr circle in Sec. 2.6.3 (3), the maximum shear stress is the largest one of the three 1/2

∣∣∣σi − σj
∣∣∣, (i, j = I, II, III)

quantities. This criterion is called the Tresca’s yield condition, and, it may be expressed by

f ∗(σ, history) ≡
{
(σi − σii)2 − 4 τ2

y(history)
} {

(σii − σiii)2 − 4 τ2
y(history)

} {
(σiii − σi)2 − 4 τ2

y(history)
}
= 0.

(9.55)
The corresponding yield locus is not smooth but has corners, and is illustrated by a hexagon in Fig. 9.19. Or, the
condition can be expressed in terms of the invariants of the deviatoric stress by

f ∗(J2, J3, history) = 4J3
2 − 27J2

3 − 36 (J2)2 τ2
y + 96 J2 (τy)4 − 64 (τy)6 = 0.

Several other expressions can be found in many references; e.g.

f = max
i, j=I, II, III

(
σi − σj

)2 − 4 τ2
y(history); (9.56)

or
f =

√
J2 cos θl − τy = 0 (9.57)

[57], where θl is the Lode angle defined by

θl ≡
1
3

sin−1

−3
√

3 J3

2 J
3
2
2

 , −π
6
≤ θl ≤

π

6
, θl = θs −

π

6
, (9.58a, b, c)

and θs is defined by Eq.(9.25).
Incidentally, we employed the same shearing yield stress τy for both models. Namely, the two conditions

coincide with each other at two points A and B (pure shear states at σi = −σiii = ±τy, σii = 0) on the yield loci
in the left figure of Fig. 9.19. Hence, from Tresca’s condition, the tensile yield stress σy is related to the shearing
yield stress as

σy = 2 τy (Tresca with shearing-yield equivalence), (9.59)

which is different14 from Eq.(9.28) of the Mises condition. However, the right figure of Fig. 9.19 is found in almost
all the textbooks in which the same tensile yield stress is used for both the models. In this case, the relation between
the shearing yield stress and the tensile yield stress coincides with

σy =
√

3 τy (Tresca with tensile-yield equivalence) (9.28) copied

of the Mises model. Experimental data of metal materials are distributed between the two loci in the right figure and
are rather close to the Mises locus [98]. So that the Mises yield condition15 is often employed in many researches.

13 Because of the microscopic structures, macroscopic behavior of some composites shows yielding [131] under the hydrostatic pressure
even though each phase is modeled by the Mises condition. Fig. C.10 shows one example.

14 In plastically plane strain state in Sec. 9.5, the Mises condition results in Eq.(9.155) which is the same as Eq.(9.59).
15 In the case of the polycrystalline metals, the number of slip planes is so large that corners almost disappear macroscopically.



9.3. GENERAL ELASTIC-PLASTIC MODELS 393

(2) Definition of Stable Plastic Materials

Drucker [15] defined the stable plastic materials by∫ (
σi j − σ(0)

i j

)
ϵ̇

p
i j dt ≥ 0, (9.60)

which is called the Drucker’s postulate. The integration is carried out along a deformation path with plastic
deformation, and σ(0)

i j denotes the initial stress state of the history. Or, a stronger condition of stability at one
particular plastic state can be specified by the integrand of this Eq.(9.60) as positiveness of the instantaneous
plastic work during loading steps; i.e. (

σi j − σ(0)
i j

)
ϵ̇

p
i j ≥ 0. (9.61)

Intuitively, this condition cannot be satisfied along the paths B and C in Fig. 9.20. For more theoretical expla-
nations, readers must consult with other references; e.g. [29]. Unfortunately, we cannot fully understand such
concepts as the principle of maximum plastic work relating to the uniqueness of solutions etc.

(3) Basic Flow Rule — Normality Rule

τ

O γp

A

B

C

τy

Fig. 9.20 Stable plastic materi-
als

The yield condition of the isotropic materials is here generalized to express
Eq.(9.26b) by

f ≡ h(J2, J3) − τy(ϵp) = 0, (9.62)

where the history dependence is explicitly embedded by making the shearing
yield stress τy a function of the effective plastic strain ϵp. As the most basic ex-
amples, h is given by a function of J2 and J3 only, and some other models will
be introduced in Sec. 9.4. Suppose that a deformation path associated with plas-
tic deformation starts from the stress state σ(0) to the final stress state σ which
satisfies the yield condition of Eq.(9.62). Then, the stress difference

(
σ − σ(0)

)
and the corresponding incremental plastic strain ϵ̇p must satisfy the following
two conditions;

1. the stable criterion in Eq.(9.61) is satisfied:

2. the direction of ϵ̇p is uniquely determined by the current stress state σ as Eq.(9.31b) indicates.

ϵ̇p

ϵ̇p

AA

BB

f = 0

Fig. 9.21 Normality rule and convexity

To this end, we must have the following two restrictions;

restriction 1: the yield surface must be convex:

restriction 2: the incremental plastic strain must be normal to
the yield surface.

Because, otherwise, we have contradictions as follows;

• if the yield surface is concave, as is shown by B in the left figure of Fig. 9.21, the difference of the direction
of the incremental plastic strain and the direction of

(
σ − σ(0)

)
can become more than 90 degrees so that the

stable condition of Eq.(9.61) cannot be satisfied;

• if the direction of the incremental plastic strain is not normal to the yield surface, as is shown by B in the right
figure of Fig. 9.21, the stable condition of Eq.(9.61) cannot be satisfied, or the direction of the incremental
plastic strain must also depend on the incremental stress direction.

The Mises and Tresca yield conditions satisfy the restriction 1. The restriction 2 can be expressed by the flow
rule satisfying

ϵ̇
p
i j ∥

∂ f
∂σi j

→ ϵ̇
p
i j = λ

∂ f
∂σi j

, λ ≥ 0, (9.63a, b, c)

because
∂ f
∂σi j

represents an outer normal vector of the yield surface ( f = 0). This new symbol λ corresponds to

λpr in the previous section, but it should be noted that λ is non-dimensional although the unit of λpr is inverse of
stress. This condition is called the normality rule. It must be very hard to treat the stress space and the incremental
plastic strain space in the same six-dimensional coordinate system, but it may be helpful to recognize the coaxiality
of the stress and the incremental plastic strain in Eq.(9.31b).
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(4) Incremental Constitutive Equations

The consistency condition must hold in the loading state undergoing continuous plastic deformation, it is expressed
from the yield condition of Eq.(9.62) by

ḟ =
∂ f
∂σi j

σ̇i j −
∂τy(ϵp)
∂ϵp ϵ̇

p
=

∂ f
∂σi j

σ̇i j −
∂τy(ϵp)
∂ϵp

√
2 ϵ̇p

i j ϵ̇
p
i j = 0.

Substitution of Eq.(9.63b) into the second term results in

ḟ =
∂ f
∂σi j

σ̇i j − λ
∂τy(ϵp)
∂ϵp

√
2
∂ f
∂σi j

∂ f
∂σi j

= 0,

and finally we have

λ =
1
H

∂ f
∂σi j

σ̇i j, H ≡ ∂τy(ϵp)
∂ϵp

√
2
∂ f
∂σi j

∂ f
∂σi j

, (9.64a, b)

where H is the hardening coefficient. Putting this relation back into Eq.(9.63b), we obtain the generalized
Prandtl-Reuss’s equation as

ϵ̇
p
i j =

1
H

∂ f
∂σi j

∂ f
∂σkl

σ̇kl. (9.65)

When the Mises yield condition is employed, remembering the relation in Eq.(9.37), we can show that Eq.(9.65)
coincides with Eq.(9.39). The inverse relation together with the elastic part will be explained in the next section
on the plastic potential.

Also, the five states can be defined from Eq.(9.64a) by the inner product of the normal vector on the yield
surface and the stress increment vector as

elastic: λ = 0 if f < 0 (9.66a)

unloading: λ = 0 if f = 0 and
∂ f
∂σi j

σ̇i j < 0 (9.66b)

neutral loading: λ = 0 if f = 0 and
∂ f
∂σi j

σ̇i j = 0 (9.66c)

loading: λ > 0 if f = 0 and
∂ f
∂σi j

σ̇i j > 0 (9.66d)

inadmissible: f > 0, (9.66e)

because, as long as the yield surface is convex, positiveness of the inner product indicates that the incremental
stress is to go out of the yield surface. Again, when the Mises condition is employed, we can show equivalence
between this Eq.(9.66) and Eq.(9.40) using Eq.(9.37).

9.3.2 Introduction of Plastic Potential
(1) Plastic Potential and Incremental Elastic-Plastic Relation

Referring to the description by Hill [29], we here introduce another concept called the plastic potential. During
continuing plastic deformation (plastic loading state), the term h in Eq.(9.62) continues to increase, and at the same
time τy increases to keep f = 0. Therefore, the loading state can be defined by

loading: f = 0, ḟ = 0, ḣ > 0, τ̇y > 0 ⇒ ϵ̇p > 0, f = 0. (9.67)

On the other hand, the neutral loading state can be specified by

neutral loading: f = 0, ḟ = 0, ḣ = 0, τ̇y = 0 ⇒ ϵ̇p = 0, f = 0. (9.68)

Moreover, the unloading condition can be given by

unloading: f = 0, ḟ < 0, ḣ < 0, τ̇y = 0 ⇒ ϵ̇p = 0, f < 0. (9.69)
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Since the sign of ϵ̇p is the same as the sign of ḣ in both the loading and the neutral loading states, introducing
a new symmetric tensor G, we can specify the incremental plastic strain by

ϵ̇
p
i j = Gi j ḣ, (9.70)

where G must satisfy
(principal axis of G) ∥ (principal axis of σ), Gkk = 0 (9.71)

for the crystalline metals. The first condition reflects the coaxiality of the flow rule, and the second one represents
the plastic incompressibility. Introduction of this new tensor G increases freedom of making models of plasticity,
because G can be independent of the yield functions f and h. As one simple model, we can set

Gi j =
1

H′
∂g(J2, J3)
∂σi j

,
∂g(J2, J3)
∂σkk

= 0 (9.72a, b)

using a new function g(J2, J3). This function g is called the plastic potential, and H′ is a kind of the hardening
coefficient. Substitution of Eq.(9.72a) into Eq.(9.70) leads to the incremental plastic strain as

ϵ̇
p
i j =

1
H′

∂g(J2, J3)
∂σi j

ḣ. (9.73)

Then, the consistency condition becomes

ḟ = 0 = ḣ − ∂τy

∂ϵ
p
i j

ϵ̇
p
i j.

Putting Eq.(9.73) into the second term of the right-hand side of this equation, and considering that ḣ is kept positive
during the loading steps, we can express the hardening coefficient by

ḣ =
∂τy

∂ϵ
p
i j

1
H′

∂g

∂σi j
ḣ → H′ =

∂τy

∂ϵ
p
i j

∂g

∂σi j
.

Replacing
ḣ

H′
in Eq.(9.73) by a new symbol λ, we can write it as

ϵ̇
p
i j = λ

∂g(J2, J3)
∂σi j

, λ ≥ 0, (9.74a, b)

which is considered to be a generalized flow rule. Note that the Drucker’s postulate cannot always be satisfied.

(2) Generalized Incremental Constitutive Equations

Suppose that the yield function is defined by

f (J2, J3, ϵ
p) ≡ h(J2, J3) − τy(ϵp). (9.75)

Also, the plastic potential is defined by a function g(J2, J3) which is not always equal to h, and the flow rule is
given by Eq.(9.74a). Since the loading condition can be specified by Eq.(9.67), it is expressed by

ḣ =
∂h
∂σi j

σ̇i j =
∂ f
∂σi j

σ̇i j > 0.

Consequently, the loading/unloading states are the same as those in Eq.(9.66) because the neutral loading and the
unloading are specified by Eqs.(9.68) and (9.69).

From Eq.(9.75), the consistency condition can be calculated as

ḟ =
∂h
∂σi j

σ̇i j −
∂τy

∂ϵp

√
2 ϵ̇p

i j ϵ̇
p
i j = 0.

Substituting the flow rule of Eq.(9.74a) into the second term, we have

ḟ =
∂ f
∂σi j

σ̇i j −
∂τy

∂ϵp λ

√
2
∂g(J2, J3)
∂σi j

∂g(J2, J3)
∂σi j

= 0 (a)
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because
∂h
∂σi j

=
∂ f
∂σi j

. Therefore, if the hardening coefficient H is define in terms of the plastic potential g by

H ≡ ∂τy

∂ϵp

√
2
∂g(J2, J3)
∂σmn

∂g(J2, J3)
∂σmn

(9.76)

in place of Eq.(9.64b), we obtain

λ =
1
H

∂ f
∂σkl

σ̇kl. (b)

Putting this result back into the flow rule of Eq.(9.74a), we can write the incremental plastic strain as

ϵ̇
p
i j =

1
H
∂g(J2, J3)
∂σi j

∂ f (J2, J3)
∂σkl

σ̇kl. (9.77)

Introduction of the plastic potential g generalizes the definition of the hardening coefficient H as well as the
direction of the incremental plastic strain as is shown in Fig. 9.22.

∂ f
∂σ

ϵ̇p

Range of σ̇

f = 0

g = const.

Fig. 9.22 Plastic potential and yield condi-
tion

Substituting the incremental Hooke’s law of Eq.(9.42) and
Eq.(9.77) into the additive description in Eq.(9.22), we obtain the
elastic-plastic tangent constitutive equation as

ϵ̇i j =

{
Di jkl +

χ

H
∂g

∂σi j

∂ f
∂σkl

}
σ̇kl. (9.78)

Also, the elastic-plastic tangent compliance can be defined by

Dep
i jkl = Di jkl +

χ

H
∂g

∂σi j

∂ f
∂σkl

, (9.79)

where χ is given by Eq.(9.51).

General derivation of inverse relation: In Sec. 9.2.3, the inverse relation has been derived through some phys-
ical consideration. Since it is not so easy for the generalized constitutive equation to apply the similar physical
approach, we here employ a general scheme by Simo and Hughes [69]. Substitution of Eq.(9.76) into Eq.(a) yields

∂ f
∂σi j

σ̇i j = H λ. (c)

On the other hand, substituting the flow rule into the elastic constitutive equation defined by Eq.(9.41), we can
express

σ̇i j = Ci jkl

(
ϵ̇kl − λ

∂g

∂σkl

)
. (d)

From Eqs.(c) and (d), we obtain

∂ f
∂σi j

Ci jkl ϵ̇kl − λ
∂ f
∂σi j

Ci jkl
∂g

∂σkl
= H λ,

from which λ can be expressed by

λ =
1

H̃

∂ f
∂σab

Cabcd ϵ̇cd, H̃ ≡ ∂ f
∂σmn

Cmnpq
∂g

∂σpq
+ H. (9.80a, b)

Putting this relation back into Eq(d), we have

σ̇i j = Ci jkl

{
ϵ̇kl − χ

∂g

∂σkl

1

H̃

∂ f
∂σab

Cabcd ϵ̇cd

}
,

or eventually

σ̇i j =

{
Ci jkl −

χ

H̃
Ci jab

∂g

∂σab

∂ f
∂σcd

Ccdkl

}
ϵ̇kl. (9.81)

Therefore, the elastic-plastic tangent modulus can be defined by

Cep
i jkl = Ci jkl −

χ

H̃
Ci jab

∂g

∂σab

∂ f
∂σcd

Ccdkl. (9.82)
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J2 flow rule and associated flow rule: The generalized Prandtl-Reuss’s Eq.(9.65) is a special case of Eq.(9.77)
when

∂ f (J2, J3)
∂σi j

=
∂h(J2, J3)
∂σi j

=
∂g(J2, J3)
∂σi j

= σ′i j

2σ

 i.e. h = g (= σ) . (9.83a, b)

The original Prandtl-Reuss’s Eq.(9.39) corresponds to the case given in two parentheses in Eq.(9.83). The flow
rule specified by f and g satisfying Eq.(9.83) except the terms in two parentheses is called the associated flow
rule. Hence, those which do not satisfy Eq.(9.83) are called the non-associated flow rules. Or, more generally,
Eq.(9.77) can be expressed by

ϵ̇
p
i j = Pi j Qkl σ̇kl, ϵ̇p = (P ⊗ Q) : σ̇.

These two tensors P and Q are the same for the associated flow rules. The Prandtl-Reuss’s Eq.(9.39) employs only
J2 for h and g and is called the J2 flow rule. Also, in such a case, we have

ϵ̇
p
= λ

1
√

J2

√
1
2
σ′i j σ

′
ji = λ, (9.84)

and we can recognize that the physical meaning of λ is the effective plastic strain increment.

Exercises 9-3

3. Derive Eq.(9.46) from Eq.(9.43) by the standard physical approach. Next, try the same derivation by the
scheme used to obtain Eq.(9.81).

9.3.3 Examples and History-Dependence
(1) Example with 2 stress components

We can easily imagine that many readers get lost in dark forest of many equations and many indices. Possibly
because it is difficult to understand the corresponding physical meanings of the models. One of the ways of
understanding is to illustrate the deformation paths and the yield loci for typical examples under a simple stress
state. To this end, we here employ the basic Prandtl-Reuss’s model with only two components of the stress tensor.
The governing equations are summarized as follows:

f ≡ σ − τy, σ ≡
√

J2, J2 ≡
1
2
σ′i j σ

′
i j, τy ≡ τy0 + H ϵp, ϵ̇

p ≡
√

2 ϵ̇p
i j ϵ̇

p
i j. (9.85a, b, c, d, e)

For the time being, the hardening coefficient H is set at constant. Also, since

∂ f
∂σi j

=
1

2σ
σ′i j,

the loading condition is given by
∂ f
∂σi j

σ̇i j > 0 → 1
2σ

σ′i j σ̇i j > 0. (9.86)

From the flow rule and the consistency condition, we have

ϵ̇
p
i j =

1
H

1

4σ2 σ
′
i j σ
′
kl σ̇kl. (9.87)

Consider a thin-walled cylinder subjected to continuous loads of an axial tension and a torsion, and the stress
has only two non-zero components as

σ11 = σ, σ12 = τ, other components ≡ 0. (9.88a, b, c)

The elastic parts can be calculated from Eq.(9.42) as

ϵ̇e
11 =

1
E
σ̇, ϵ̇e

22 = −
ν

E
σ̇, ϵ̇e

33 = ϵ̇
e
22, ϵ̇e

12 =
1

2µ
τ̇. (9.89a, b, c, d)

Since the deviatoric stress components are σ′12 = σ
′
21 = τ and

σ′11 =
2
3
σ, σ′22 = −

1
3
σ, σ′33 = σ

′
22, (9.90a, b, c)
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the effective stress can be evaluated from Eqs.(9.85b) and (9.85c) by

σ =

√
1
3
σ2 + τ2, (9.91)

and, from Eq.(9.86), the loading condition is given by

σ′i j σ̇i j =
2
3
σ σ̇ + 2 τ τ̇ → 1

3
σ σ̇ + τ τ̇ > 0. (9.92)

As far as the loading condition of Eq.(9.92) is satisfied, the flow rule of Eq.(9.87) becomes

ϵ̇
p
11 =

σ

3H
(
σ2 + 3τ2) (σ σ̇ + 3 τ τ̇) , ϵ̇

p
22 = −

1
2
ϵ̇

p
11, ϵ̇

p
33 = ϵ̇

p
22, ϵ̇

p
12 =

τ

2H
(
σ2 + 3τ2) (σ σ̇ + 3 τ τ̇) .

(9.93a, b, c, d)
Incidentally, by the flow rule, we have a relation as

ϵ̇
p
i j = λpr σ

′
i j →

3ϵ̇p
11

2σ
=
ϵ̇

p
12

τ
, (9.94)

which may seem a very peculiar restriction but is an important condition as will be shown later on. During the
plastic loading steps, substitution of Eq.(9.93) into Eq.(9.85e) results in

ϵ̇
p
=

√
3
(
ϵ̇

p
11

)2
+ 4

(
ϵ̇

p
12

)2
=

1

H
√

1/3σ2 + τ2

{
1
3
σ σ̇ + τ τ̇

}
. (9.95)

Also, from Eq.(9.91), we have ϵ̇
p
=

1
H
σ̇, and we can integrate the equation above to obtain

ϵp
=

1
H

√
1
3
σ2 + τ2 + const. → σ = H

(
ϵp − const.

) → σ = τy0 + H ϵp, (9.96)

when H is constant. This relation eventually equals to the yield condition of either Eq.(9.85a) or Eq.(9.85d). In
special cases when either σ or τ is zero, two relations hold;

in the case of τ ≡ 0, 3Hϵ̇p
11 = σ̇, and in the case of σ ≡ 0, 2Hϵ̇p

12 = τ̇ (9.97a, b)

respectively.
The flow rule of Eq.(9.93) can be explicitly written in the matrix form by{

3H ϵ̇
p
11

2H ϵ̇
p
12

}
=

(
A

) {
σ̇
τ̇

}
,

(
A

)
≡ 1
σ2 + 3τ2

(
σ2 3στ
σ τ 3τ2

)
. (9.98a, b)

Then, if two conditions as
∂A11

∂τ
=
∂A12

∂σ
,

∂A21

∂τ
=
∂A22

∂σ
(9.99a, b)

are satisfied, the flow rule is integrable indicating that the plastic strain can be uniquely determined independently
of the deformation history. Actually, since these derivatives are obtained as

∂A11

∂τ
=
−6σ2τ

(σ2 + 3τ2)2 ,
∂A12

∂σ
=

3τ
(
3τ2 − σ2

)
(σ2 + 3τ2)2 ,

∂A21

∂τ
=
σ

(
σ2 − 3τ2

)
(σ2 + 3τ2)2 ,

∂A22

∂σ
=
−6στ2

(σ2 + 3τ2)2 ,

Eq.(9.99) is not satisfied. This equation is an example of the condition of Eq.(9.44). Therefore, the plastic defor-
mation is history dependent [48], and it is true even in the proportional loading as σ/τ = constant.

(2) Consecutive Loading Phase

During the continuing plastic deformation path, let us try to evaluate the inverse relation of the flow rule of
Eq(9.98). Since the matrix

(
A

)
is singular, we need to use the Alternative Theorem explained at p.195. First,

because the following adjoint homogeneous equation has a solution as(
A

)t {
w

}
=

{
0
}
→

{
w

}
=

{
τ
−σ

}
,



9.3. GENERAL ELASTIC-PLASTIC MODELS 399

the consistency condition to have a (non-unique) solution becomes{
3Hϵ̇p

11
2Hϵ̇p

12

}t {
w

}
= 0 → 3ϵ̇p

11 τ − 2ϵ̇p
12 σ = 0 →

3ϵ̇p
11

2σ
=
ϵ̇

p
12

τ
,

which coincides with the restriction Eq.(9.94). Therefore, we can have a non-unique solution. The homogeneous
solution can be obtained as (

A
) {
v
}
=

{
0
}
→

{
v
}
=

{
3τ
−σ

}
.

Also, the particular solution can be expressed by the solution in one-dimensions of Eq.(9.97); i.e.{
particular solution

}
=

{
3H ϵ̇

p
11

2H ϵ̇
p
12

}
.

Finally, a general solution can be obtained as{
σ̇
τ̇

}
=

{
3H ϵ̇

p
11

2H ϵ̇
p
12

}
+ c

{
3τ
−σ

}
, (9.100)

where c is an arbitrary parameter. From Eq.(9.92), we can show that the homogeneous solution with c satisfies the
neutral loading condition as

(
∂ f/∂σi j σ̇i j = 0

)
. Therefore, the solution of Eq.(9.100) can be interpreted as

(stress increment) =
(
part normal to the yield surface

)
+

(
part tangential to the yield surface

)
.

(3) Power Laws of Hardening

2ϵ12τy0

µ

O

µ

τ

τy0 (
τ − τy0

h

)1/m

Fig. 9.23 Simple shear (power law hardening)

One of the non-constant hardening laws can be defined by
Eq.(9.147); i.e.

σ = τy0 + h
(
ϵp)m or H = m h

(
ϵp)m−1

, (9.101a, b)

which is called the power law. Even in this case, the effective plas-
tic strain increment of Eq.(9.95) is integrable to obtain Eq.(9.101)
above. Also, the plastic strain increment of Eq.(9.93) is not inte-
grable, and the plastic deformation is generally history dependent.

However, under the pure shear as a special case, the strain
increment can be integrated to obtain

2 ϵ12 =
τ

µ
+

(
τ − τy0

h

)1/m
(9.102)

as is shown in Fig. 9.23. Several numerical results will be shown in Fig. 9.39, where some other definitions of h
are used, and the abscissa is the effective plastic strain.

(4) Numerical Results along Complex Loading Paths

We here show a typical result of the history dependence by applying three different loading patterns toward the
same target state. Referring to steel materials, we set the material parameters as E = 200 GN/m2, ν = 0.3,
H = E/1000 and τy0 = 300 MN/m2. Fig. 9.24 shows the three patterns of loading. In all the cases, the proportional

σ

τ α

f0 ≡ σ − τy0 = 0

prop

s2t

t2s

O
Fig. 9.24 Loading patterns

Table 9.1 Stresses at initial yielding and target
stages (MN/m2)

α σstart τstart σfinal τfinal

1/√3 367 212 433 250
1/

(
10
√

3
) 517 29.9 589 34.0

10/√3 51.7 299 64.1 370
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Table 9.2 Comparison of strains at final stage (%) of each loading paths

α strain components prop-ortional t2s: torsion-to-stretch s2t: stretch-to-torsion
ϵ11 11.148 10.688 (−4.1%: −1.7%) 11.584 (3.9%: 1.6%)

1/√3 ϵ12 9.6295 10.007 (3.9%: 1.4%) 9.2310 (−4.1%: −1.5%)
ϵp 26.777 26.777 26.777
ϵ11 12.271 12.263 (−0.065%: −0.038%) 12.278 (0.057%: 0.034%)

1/
(
10
√

3
)

ϵ12 1.0593 1.1275 (6.4%: 0.33%) 0.99390 (−6.2%: −0.31%)
ϵp 20.848 20.848 20.848
ϵ11 2.0957 1.8840 (−10%: −0.59%) 2.3226 (11%: 0.63%)

10/√3 ϵ12 18.113 18.130 (0.094%: 0.047%) 18.092 (−0.11%: −0.058%)
ϵp 35.923 35.923 35.923

Table 9.3 Strains at final stage (%) of each loading paths with high yield stress and high hardening parameter

α strain component prop t2s s2t
ϵ11 1.1698 1.1389 (−2.6%: −1.5%) 1.1992 (2.5%: 1.5%)

1/√3 ϵ12 0.97208 0.99752 (2.6%: 1.3%) 0.94536 (−2.7%: −1.3%)
ϵp 1.9957 1.9957 1.9957

loading with τ = ασ is applied up to the initial yield state. As for the proportional coefficient, α = 1/√3 is chosen
to have almost the same order of magnitude for both σ and τ, while two different values in Table 9.1 are used for
the purpose of comparison. In the proportional loading (prop) case after the initial yield, the chosen α is kept until
the final stress state at (σfinal, τfinal). In the case when stretch precedes torsion (s2t: stretch-to-torsion), before τ is
applied, only σ is applied after the initial yield state at (σstart, τstart) to the target state σfinal. On the other hand, in
the case when torsion precedes stretch (t2s: torsion-to-stretch), τ is applied to its target τfinal before applying σ.
The stress levels at the initial yield and the final (target) stage are shown in Table 9.1 for each α.

The number of the loading steps N after the initial yield is set at N = 10000 (N = 20000 for ‘t2s’ and ‘s2t’).
The total strains and the effective plastic strains at the final stage are enumerated in Table 9.2. The effective plastic
strains reaches the same value at the final stage, because its increment can be integrable as has been shown in
Eq.(9.96), but the total strains show clear history dependence. The value before colon in each parenthesis shows
the relative difference with respect to each component of the proportional case, and the one after colon indicates the
difference with respect to the effective plastic strain. In order to exaggerate the differences, calculations have been
carried out up to unrealistic 10% strain levels. The differences with respect to the effective plastic strain are about
1.4∼1.7% when α = 1/√3, while they are small when α = 1/

(
10
√

3
) or α = 10/√3. Therefore, the history dependence

becomes significant in large levels of multiple stress states.
As a more realistic example, the material parameters are set at H = E/50 and τy0 = 500 MN/m2. Table 9.3 shows

one result when α = 1/√3. In this case, the stress at the initial yield state is given by (σstart, τstart) = (612, 354),
and the final stage is specified by about 2% level of the effective plastic strain. Then the stress level at the target
stage is specified by (σfinal, τfinal) = (710, 410). The order of magnitude representing the history dependence with
respect to the effective plastic strain becomes about 1.3∼1.5%, although the final strain level is much smaller (2%)
than that (27%) of the previous example.

(5) Numerical Results without Consistency Condition

Some readers may think that the consistency condition is an approximation, because it seems to linearize the yield
condition in its derivation. We here solve an example without using the consistency condition, and the results
with history dependence are compared with those using the condition. The steps of manipulation are given in our
Japanese edition. In this section, instead of applying the stress, the strain is specified.

The final strain when α = 1/√3 in the previous example is chosen as the target strain. Hence, the strain at the
initial yield state in the second row of Table 9.4 is the same as that in the case of α = 1/√3 of the previous example,
and the target strains are set at the values in the second and third rows of the third column of Table 9.2. Also, the
strains ϵswitching in this table show the values at the switching stage of the two loading patterns as ‘t2s’ and ‘s2t’.
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Table 9.4 Comparisons of stress states (MN/m2) with or without consistency condition

prop t2s s2t
(ϵ11, ϵ12)start (%) (0.18371, 0.13789)

(ϵ11, ϵ12)switching (%) — (5.6235, 5.2930) (6.1407, 4.8489)
(ϵ11, ϵ12)final (%) (11.148, 9.6295)

w/o consistency cond. (σ, τ) (433.01, 250.00) (453.71, 237.53) (411.41, 261.96)
difference from [prop] case (%) — (4.8, −5.0) (−5.0, 4.8)

ϵ
p
final (%) 26.78 26.80 26.81

incremental analysis with N = 100 (433.01, 250.00) (454.04, 237.75) (411.76, 262.18)
incremental analysis with N = 1000 (433.01, 250.00) (453.74, 237.55) (411.44, 261.98)
incremental analysis with N = 10000 (433.01, 250.00) (453.72, 237.53) (411.41, 261.96)

0 0.05 0.1
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σ11 (MN/m2)

ϵ11

prop

s2t

t2s

α =
1
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3

Fig. 9.25 Results without consistency condition
(linear hardening)
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= 0.268

Fig. 9.26 Expansion of yield surface and stress
paths

Consequently, no unloading will occur. Lower three rows of this table show the results by the ordinary incremental
analysis using the consistency condition. Since the constant hardening is employed, the results of the proportional
loading coincide with those by the incremental analysis with N = 100 shown in the eighth row of the table. The
magnitude of difference representing the history dependence becomes about 5% and is almost the same as that of
the previous example in Table 9.2. The differences in the effective plastic strains at the final state are not so large
and are considered to be caused by some numerical errors. The corresponding stress-strain relations are shown in
Fig. 9.25, and the stress paths are also depicted in Fig. 9.26. Although the softenings seem to occur at the switching
stage in the former figure, the latter figure ensures that the paths are always to the loading directions.

On the other hand, the precision of four-digit is obtained in the incremental analyses even when N = 100,
where the incremental strain is set at somewhat large value as 1000 µ. However, when N = 10 is chosen, the
numerical calculations sometimes become unstable together with the softening responses. Since the small steps
of loading cannot be avoidable for the history dependent plastic constitutive models, the incremental analysis with
the consistency condition leads to the satisfactory precision as far as each strain step is kept smaller than 1000 µ.
Furthermore, we can conclude that no iterative scheme is necessary, and that the nonlinear terms are not necessarily
taken into account at each incremental step.

(6) Numerical Results with Power-Law Hardening

Employing the power-law model in Eq.(9.101a), we set h = 500 MN/m2, m = 0.17 and τy0 = 400 MN/m2. The
target state is set at about 1% of the effective plastic strain to obtain the stress levels of the initial yielding state and
the final state as are in Table 9.5. First, we use the ordinary incremental analysis with the consistency condition.
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Table 9.5 Stress levels at initial yield and final
stages (MN/m2)

α σstart τstart σfinal τfinal

1/√3 489.9 282.8 779.4 450.0
1/

(
10
√

3
) 689.4 39.80 1091 63.00

10/√3 68.94 398.1 109.1 630.0

Table 9.6 shows the results at the final state. The relative
errors when N = 103 in the third column become larger than
5%, but they become much smaller when N = 104. In the
stress-strain relation of Fig. 9.27, three black circles indicate
the final states in the case of the proportional loading with
N = 103, N = 104 and N = 108. The thin dot-dashed curve
for N = 103 deviates to some extent from the thick dot-dashed
curve with N = 108, but the curves for N = 104 and N = 108

almost overlap. The incremental stress step when N = 104 is
about 30 kN/m2 in this particular example, but this value is much smaller than that for the constant hardening case.

Table 9.6 Final levels of strain components (%): relative errors in parentheses are evaluated from values in [prop]
with N = 108

pattern strain component N = 103 104 105 106 107 108

ϵ11 .78875 (−11%) .87537 .88629 .88754 .88768 0.88770
prop ϵ12 .63808 (−12%) .71309 .72255 .72364 .72376 0.72377

ϵp .97744 (−2.0%) 1.1896 1.2164 1.2194 1.2198 1.2198
ϵ11 .80450 (−6.0%) .84950 .85487 .85548 .85555 0.85556 [−3.6%]

t2s ϵ12 .69787 (−6.8%) .74264 .74800 .74860 .74867 0.74868 [3.4%]
ϵp 1.0849 (−11%) 1.2038 1.2180 1.2196 1.2198 1.2198
ϵ11 .85780 (−6.4%) .90949 .91567 .91637 .91645 0.91646 [3.2%]

s2t ϵ12 .65172 (−6.4%) .69069 .69534 .69587 .69593 0.69593 [−3.8%]
ϵp 1.0849 (−11%) 1.2038 1.2180 1.2196 1.2198 1.2198
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σ11
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s2t (N = 108)

α =
1
√

3

N = 103 104

Fig. 9.27 History dependence of responses (incremental
analysis)

The order of magnitude of the history dependence
can be quantified by the relative errors in the brack-
ets of the right-most column of Table 9.6, and they
are about 3%. The corresponding stress-strain histo-
ries are also plotted in Fig. 9.27, where the solid curve
toward □ shows the result of the case ‘t2s’, and the
dashed curve toward ○ is the one for ‘s2t’. Quanti-
tatively similar results are obtained when α = 1/

(
10
√

3
)

and 10/√3.
Lastly, we carry out the simulations with the ap-

plied strain specified but without the consistency con-
dition. The steps of analysis are given in our Japanese
edition. The initial yield state and the final state is
calculated from the results of the previous example in
Table 9.6. The switching states are also determined
similarly. These values of the strains are shown in the
upper three rows in Table 9.7. Although the number of
incremental steps N must be set to some extent larger
than that in the case of constant hardening, the results
in Table 9.7 show that the iterative calculation at each step improves the precision in comparison with the ordi-
nary incremental analysis with the consistency condition. But, at the same time, the results shown in the lower
four rows indicate that such iterative scheme is not always necessary. The stress-strain relations and the stress
paths with the yield condition are depicted in Figs. 9.28 and 9.29. The loading condition is always satisfied in the
numerical calculation, and it is also clear from the stress paths in Fig. 9.29. Just for the purpose of comparison,
calculation with N = 100 has been carried out to obtain a thin curve in Fig. 9.28, and we can conclude that the
results have satisfactory precision from the engineering point of view. Incidentally, the simple incremental results
with N = 103 and that for N = 108 completely overlap in this scale of figure. The incremental strain used for
N = 103 is about 10 µ which is one hundredth of that of the case of constant hardening. Because, much smaller
increment is necessary for the power-law models in order to handle its nonlinearity properly.
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Table 9.7 Stresses (MN/m2) evaluated without consistency condition

prop t2s s2t
(ϵ11, ϵ12)start (%) (0.24495, 0.18385)

(ϵ11, ϵ12)switching (%) — (0.25731, 0.30864) (0.40834, 0.19455)
(ϵ11, ϵ12)final (%) (0.88770, 0.72377)

(σ, τ) N = 102 w/o consistency cond. (783.07, 447.87) (824.39, 422.58) (734.86, 474.75)
(σ, τ) N = 103 w/o consistency cond. (783.02, 447.90) (823.85, 422.93) (735.43, 474.45)
(σ, τ) N = 104 w/o consistency cond. (783.02, 447.90) (823.80, 422.96) (735.48, 474.42)
(σ, τ) N = 105w/o consistency cond. (783.02, 447.90) (823.79, 422.97) (735.49, 474.41)

difference from [prop] cases (%) — (5.21, −5.57) (−6.07, 5.92)
ϵ

p
final (%) 1.2196 1.2225 1.2289

incremental analysis N = 102 (789.05, 451.94) (826.82, 424.79) (738.29, 476.43)
incremental analysis N = 103 (783.62, 448.31) (824.09, 423.15) (735.77, 474.61)
incremental analysis N = 104 (783.08, 447.95) (823.82, 422.98) (735.52, 474.43)
incremental analysis N = 105 (783.02, 447.91) (823.79, 422.97) (735.49, 474.41)
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Fig. 9.28 Without consistency condition (power-law
hardening)
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Fig. 9.29 Expansion of yield surface and history de-
pendence

9.3.4 Motion of Dislocations and Prandtl-Reuss Model

b
ν V

β̇
p
12

x2

x1

x1

x2

Fig. 9.30 Motion of disloca-
tions and plasticity

An interesting description about a relation between the mathematical disloca-
tion and the plasticity can be found in the book by Mura [56]. Suppose that the
dislocation with its Burgers vector b extends to the ν direction. When the ve-
locity of this dislocation subjected to applied forces is denoted by V, the plastic
velocity gradient can be written as

β̇
p
i j = −ρ e jnh Vn νh bi or β̇

p
= −ρ (V × ν) b, (a)

where e jnh is the permutation symbol defined by Eq.(2.27). The surface dislo-
cation density is then defined by

αhi ≡ ρ νh bi.

Fig. 9.30 shows an example that the dislocation line of a dislocation with b ≡ ⌊b1 0 0⌋t extends only to the x3-
direction; i.e. ν ≡ ⌊0 0 1⌋t. Then, the action of the velocity V ≡ ⌊V1 0 0⌋t results in only one non-zero component
of the velocity gradient β̇p

12 = ρV1 b1. Then the incremental plastic strain can be evaluated by the symmetric part
of the velocity gradient as

ϵ̇
p
i j =

1
2

(
β̇

p
i j + β̇

p
ji

)
. (b)
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In the plastic loading state, the rate of plastic work and the plastic volumetric strain increment must satisfy

ẇp = σi j ϵ̇
p
i j = −σi j e jnh Vn αhi > 0, ϵ̇

p
ii = −einh Vn αhi = 0

from Eqs.(a) and (b). Mura found that both of these relations hold only when

Vn αhi = µ
∗ gnhi, gnhi ≡ −

1
2

enh j σ
′
ji, µ∗ > 0, (c)

where g is considered to represent some force acting on the dislocation line. If you substitute Eq.(c) into two
equations above, you can easily show

ẇp =
1
2
µ∗ enh j enhk σi jσ

′
ki = µ

∗ σ′i j σ
′
ji > 0, ϵ̇

p
ii =

1
2
µ∗ enhi enh j σ

′
ji = 0.

Substituting Eq.(c) into Eq.(a), we can rewrite Eq.(b) as

ϵ̇
p
i j =

1
2
µ∗ enh jenhk σ

′
ki = µ

∗ σ′ji, µ∗ > 0,

which is exactly equal to the flow rule of Eq.(9.31b) by replacing µ∗ by λpr. Moreover, the magnitude (norm) of
the force g on the dislocation line can be evaluated as

gnhi gnhi =
1
4

enhk σ
′
ki enhl σ

′
li =

1
2
σ′ji σ

′
ji,

which is the effective stress σ of Eq.(9.23b). Hence, the Prandtl-Reuss plasticity with the Mises yield condition has
been interpreted by the microscopic kinematics of the mathematical dislocation for the plastically stable materials.

9.4 Other Useful Physical Models

9.4.1 Kinematic Hardening Model
(1) Introduction of Movable Yield Surface

O

σy

σ11

ϵ11−σy

A

B

C

B
C

A

α

initial

Fig. 9.31 Characteristics of hardening

The basic hardening model in the previous sections enlarges
the yield surface to all the stress directions like a yield lo-
cus A in the right figure of Fig. 9.31. Thus, once the plas-
tic deformation undergoes to the positive direction of σ11
in the left figure of Fig. 9.31, the succeeding unloading to-
ward the negative direction of σ11 does not start yielding
until the stress reaches the last level to the positive direc-
tion as is indexed by A. This kind of hardening is called the
isotropic hardening. However, as has been explained in
the item 5. of Sec. 9.1.1 (2), many materials have so-called
the Bauschinger effect, so that the succeeding yield stress
becomes smaller than the stress level in the latest plastic state or even the yield stress of the virgin material. This
behavior may be modeled by yield loci indexed by B and C of the right figure of Fig. 9.31, in which the center of
the yield loci can move by α. This kind of hardening is called the kinematic hardening. The yield locus of the
model B in Fig. 9.31 moves with the constant radius, while both the center and the radius of the yield locus change
step by step during the plastic loading in the model C.

By introduction of the central position α of the yield surface, the Mises yield function can be modified by

f = f (σi j − αi j) ≡ h(σi j − αi j) − τy, h(σi j − αi j) = (σ − α) ≡
√

1
2

(
σ′i j − α′i j

) (
σ′i j − α′i j

)
, (9.103a, b)

where α′ denotes the deviatoric component of α. For the time being, the isotropic hardening is neglected, and τy
is set at constant. Also, the flow rule is assumed to be the same as Eq.(9.63b); i.e.

ϵ̇
p
i j = λ

∂ f
∂σi j

, λ ≥ 0. (9.104a, b)

Eq.(9.103) leads to the derivative in the right-hand side as

∂ f
∂σi j

=
∂h
∂σi j

=
1

2 (σ − α)

(
σ′i j − α′i j

)
=

1
2 τy

(
σ′i j − α′i j

)
. (9.105)
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f = 0

σ̇

α̇

∇ f

Fig. 9.32 Loading direc-
tion

Also, from Eq.(9.103), the consistency condition becomes

ḟ =
∂ f
∂σi j

σ̇i j +
∂ f
∂αi j

α̇i j =
∂ f
∂σi j

σ̇i j −
∂ f
∂σi j

α̇i j =
∂ f
∂σi j

(
σ̇i j − α̇i j

)
= 0. (9.106)

This relation indicates that σ̇ = α̇ must be satisfied, or that the relative increment
of (σ̇ − α̇) must be tangential to the yield surface as is shown in Fig. 9.32. For full
definition of the constitutive equation, we further need to establish the evolution laws
of α.

(2) Prager Model

The Prager model of the evolution laws of α assumes that the instantaneous motion of the center of the yield
surface occurs to the direction of the plastic strain increment

α̇i j = c ϵ̇p
i j. (9.107)

Substitution of Eqs.(9.104a) and (9.105) into this assumption results in

α̇i j = c λ
∂ f
∂σi j

= c λ
σ′i j − α′i j

2 τy
. (9.108)

Therefore, α does not have its isotropic part. Putting this relation into the consistency condition of Eq.(9.106), we
have

∂ f
∂σi j

σ̇i j =
∂ f
∂σi j

c λ
σ′i j − α′i j

2 τy
= λHpk → λ =

1
Hpk

∂ f
∂σi j

σ̇i j,

where Hpk denotes a kind of the kinematic hardening coefficient defined by

Hpk ≡
∂ f
∂σi j

c
σ′i j − α′i j

2 τy
= c

σ′i j − α′i j

2 τy

σ′i j − α′i j

2 τy
=

c
2
, (9.109)

which shows the physical meaning of the parameter c.
Using λ above, we can write the incremental plastic strain as

ϵ̇
p
i j =

1
Hpk

∂ f
∂σkl

σ̇kl
∂ f
∂σi j

=
1

Hpk

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
4 τ2
y

σ̇kl, (9.110)

and Eqs.(9.107) and (9.109) result in

α̇i j =

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
2 τ2
y

σ̇kl. (9.111)

(3) Ziegler model

A more general model for the kinematic hardening assumes that the center of the yield surface α is a function of
the effective plastic strain defined by Eq.(9.27b) as

αi j = αi j(ϵp). (9.112)

Therefore, the consistency condition of Eq.(9.106) can be expressed by

ḟ =
∂ f
∂σi j

σ̇i j −
∂ f
∂σi j

∂αi j

∂ϵp ϵ̇
p
= 0.

After substituting the flow rule of Eq.(9.104a) into Eq.(9.27b), taking Eq.(9.105) into account, we have a relation
as

ϵ̇
p
= λ

√
2
∂ f
∂σkl

∂ f
∂σkl

= λ.
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Then, the consistency condition above can be rewritten as

λ =
1

Hk

∂ f
∂σi j

σ̇i j,

where Hk is another kinematic hardening coefficient defined by

Hk ≡
∂ f
∂σi j

∂αi j

∂ϵp . (9.113)

Putting this back into the flow rule, we can express the incremental plastic strain as

ϵ̇
p
i j =

1
Hk

∂ f
∂σkl

σ̇kl
∂ f
∂σi j

=
1

Hk

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
4 τ2
y

σ̇kl, (9.114)

which is formally equivalent to the Prager model of Eq.(9.110).
As for the evolution law of α, Ziegler assumes

α̇i j = ξ
(
σi j − αi j

)
, ξ ≥ 0, (9.115a, b)

where ξ is a parameter similar to λ of the flow rule. In this model, the isotropic part of α is not zero. Substituting
this assumption into Eq.(9.106), we rewrite the consistency condition as

∂ f
∂σi j

σ̇i j =
∂ f
∂σi j

ξ
(
σi j − αi j

)
. (∗)

Since, using Eq.(9.105), we can express the right-hand side of Eq.(∗) by

right-hand side of Eq.(∗) = ξ 1
2 τy

(
σ′i j − α′i j

) (
σi j − αi j

)
= ξ

1
2 τy

(
σ′i j − α′i j

) (
σ′i j − α′i j

)
= τy ξ,

Eq.(∗) becomes

τy ξ =
∂ f
∂σi j

σ̇i j → ξ =
1
τy

1
2 τy

(
σ′i j − α′i j

)
σ̇i j.

Putting this back to the assumption above, two models of the evolution law of α can be expressed by

Ziegler: α̇i j =

(
σi j − αi j

) (
σ′kl − α′kl

)
2 τ2
y

σ̇kl, Prager: α̇i j =

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
2 τ2
y

σ̇kl. (9.116a, b)

(4) Incremental Constitutive Equations

When the elastic part is specified by the incremental Hooke’s law of Eq.(9.42), the additive description of Eq.(9.22)
together with the plastic part of Eq.(9.114) leads to

ϵ̇i j = Di jkl σ̇kl + χ

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
4 Hk τ

2
y

σ̇kl. (9.117)

Then, using the same manipulation in Sec. 9.2.3, we can derive its inverse relation as

σ̇i j = Ci jkl ϵ̇kl − χ
µ2

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
(µ + Hk) τ2

y

ϵ̇kl, (9.118)

where χ is given by Eq.(9.51).

(5) Isotropic and Kinematic Hardening Models

More realistic model may include16 both isotropic and kinematic hardenings. Employing the Ziegler model, we
modify the yield condition of Eq.(9.103) to set

f ≡ (σ − α) − τy(ϵp), (9.119)
16 Increase of the number of material parameters sometimes makes it easy to simulate complicated behaviors of materials, but it is not always

essential from the physical point of view.
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Fig. 9.33 Deformation paths with kinematic hard-
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Fig. 9.34 Motion of yield surface and history de-
pendence

where the yield stress is not constant but a function of the effective plastic strain. Then, the consistency condition
becomes

ḟ =
∂ f
∂σi j

σ̇i j −
∂ f
∂σi j

∂αi j

∂ϵp ϵ̇
p − ∂τy

∂ϵp ϵ̇
p
= 0.

Using Eqs.(9.104a), (9.38b) and (9.113), we obtain

λ =
1

Hk + H
∂ f
∂σi j

σ̇i j.

Substituting it back into the flow rule, we can express the incremental plastic strain by

ϵ̇
p
i j =

(
σ′i j − α′i j

) (
σ′kl − α′kl

)
4 (Hk + H) (σ − α)

2 σ̇kl. (9.120)

The evolution law of α is also written as

α̇i j =
Hk

Hk + H

(
σi j − αi j

) (
σ′kl − α′kl

)
2 (σ − α)

2 σ̇kl. (9.121)

These coincide with the Ziegler model when H = 0.

(6) Example

As a typical example, the material constants are given by those in Sec. 9.3.3; i.e. E = 200 GN/m2, ν = 0.3,
H = E/1000 and τy0 = 300 MN/m2. The Ziegler model is employed with the linear hardening where the hardening
coefficient is set at Hk = 50H in order to exaggerate the motion of the yield locus. Biaxial stress state is specified
by σ ≡ σ11 and τ ≡ σ12, and the same loading patterns in Fig. 9.24 are examined. When the components of the
position of the center of the yield locus are defined by

ζ ≡ α11, η ≡ α12,

almost all the steps of manipulation in Sec. 9.3.3 can be carried out by replacement of σ and τ as

σ := σ − ζ, τ := τ − η.

The evolution law of the center of the yield locus are explicitly expressed by

ζ̇ =
Hk

Hk + H
σ − ζ
3 τ2
y

{(σ − ζ) σ̇ + 3 (τ − η) τ̇} , η̇ =
Hk

Hk + H
τ − η
3 τ2
y

{(σ − ζ) σ̇ + 3 (τ − η) τ̇} ,
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which is not also integrable. Therefore, the motion of the yield locus is history dependent. Up to the first yield, the
loading is proportional with α = 1/√3, and the stress path after that is specified by

(σ, τ) : (367.4, 212.1)→ (606.2, 350.0) MN/m2.

The final value of the effective plastic strain reaches about 2% (ϵp
= 0.019).

Fig. 9.33 shows the stress-strain curves after the first yield. Although the number of loading step N is chosen
between 100 and 107, almost no difference can be seen in this scale of the figure. The motions of the yield loci
are depicted in Fig. 9.34. Three curves starting from the origin show the trajectory of the center positions α of the
three loci. The dot-dashed curves and the dotted curves are the results by the two loading patterns of ‘s2t’ and ‘t2s’
respectively, and the solid curves are for the proportional loading case.

Exercises 9-4

4. Derive Eq.(9.118) from Eq.(9.117).
5. Derive Eqs.(9.120) and (9.121).
6. Carry out the process to draw Fig. 9.33 etc.

9.4.2 Pressure Sensitive Model
(1) Yield Function and Plastic Potential

As has been explained in the item 4. of Sec. 9.1.1 (2), plastic properties of the crystalline metals like steels are
almost independent of the average stress (hydrostatic pressure). However, for materials with micro-structures
like granular materials (sand and clay), rocks and composite materials, plastic behaviors may be affected by the
average stress to some extent. We here introduce a generalized model [61] of the Drucker-Prager model [16] as
one example of the non-associated flow rule. The yield function f and the plastic potential g are defined by

f ≡ σ − F(I1,∆
p, ϵp), g ≡ σ +G(I1), (9.122a, b)

where σ denotes the effective stress defined by Eq.(9.23b), and I1 is the first invariant of the stress given by
Eq.(2.36). Since the hydrostatic pressure p is defined by

p ≡ −1
3

I1 = −
1
3
σkk, (9.123)

this new model may be called the pressure sensitive model. The main parameter to represent the history dependence
is the effective plastic strain, but it must be redefined by the deviatoric part of the plastic strain rate, because the
incremental plastic strain has its isotropic part as will be shown below. Therefore, another parameter is needed as
a counterpart of the effective plastic strain. Hence, the effective plastic strain of Eq.(9.27b) must be modified, and
a new parameter associated with the plastic volume change must be introduced as follows:

ϵp ≡
∫

history

√
2 ϵ̇p′

i j ϵ̇
p′

i j dt, ∆p ≡
∫

history
ϵ̇

p
kk dt, (9.124a, b)

where ∆p denotes the plastic volumetric strain.17

(2) Flow Rule and Plastic Strain

Substituting the plastic potential of Eq.(9.122b) into the flow rule of Eq.(9.74a), we have

ϵ̇
p
i j = λ

σ′i j

2σ
+ β δi j

 , β = β(I1) ≡ ∂G(I1)
∂I1

, (9.125a, b)

from which the plastic parts of the shear deformation and the volumetric deformation can be expressed by

ϵ̇p′
i j = λ

σ′i j

2σ
, ϵ̇

p
kk = 3λ β. (9.126a, b)

Therefore, this new parameter β represents the plastic volume change and may be called the ‘dilatancy factor.’
17 It corresponds to the dilatancy in the field of the soil mechanics.
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Since the consistency condition can be written as

ḟ =
∂σ

∂σi j
σ̇i j −

∂F
∂I1

İ1 −
∂F
∂∆p ∆̇

p − ∂F
∂ϵp ϵ̇

p
= 0,

substitution of Eq.(9.37) results in

σ′i j

2σ
σ̇i j −

∂F
∂I1

σ̇kk =
∂F
∂∆p ϵ̇

p
kk +

∂F
∂ϵp

√
2 ϵ̇p′

i j ϵ̇
p′

i j. (9.127)

After substitution of Eq.(9.126) into Eq.(9.127), several steps of manipulation leads to

σ′i j

2σ
σ̇i j −

∂F
∂I1

σ̇kk = λ

{
3
∂F
∂∆p β +

∂F
∂ϵp

}
,

from which λ can be expressed by

λ =
1
H

(
σ′kl

2σ
− ∂F
∂I1

δkl

)
σ̇kl, H ≡ 3

∂F
∂∆p β +

∂F
∂ϵp . (9.128a, b)

H is the hardening coefficient representing the change of the size of the yield surface with respect to the shear
deformation ϵp as well as the volumetric deformation ∆p. Putting this back into the flow rule of Eq.(9.125a), we
obtain the incremental plastic strain as

ϵ̇
p
i j =

1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
σ̇kl, α = α(I1,∆

p, ϵp) ≡ −∂F(I1,∆
p, ϵp)

∂I1
, (9.129a, b)

where α represents the effect of the average stress on the yield function and can be called the internal frictional
factor explained later on. When α = β, this becomes an associated flow rule.

(3) Incremental Constitutive Equations

σii

σiii

σi

O

isotropic stress

σ: shear stress

O P

P

τy

σi = σii = σiii

I1

Fig. 9.35 Example

When the elastic part is specified by the incremental Hooke’s law of
Eq.(9.42), the additive description together with the plastic part of
Eq.(9.129a) leads to

ϵ̇i j = Di jkl σ̇kl +
χ

H

σ′i j

2σ
+ β δi j

 (
σ′kl

2σ
+ α δkl

)
σ̇kl. (9.130)

Also, using the same manipulation in Sec. 9.2.3, we can derive its inverse
relation as

σ̇i j = Ci jkl ϵ̇kl − χ

µσ′i j

σ
+ 3K β δi j

 (
µσ′kl

σ
+ 3K α δkl

)
H + µ + 9K α β

ϵ̇kl. (9.131)

(4) Yield Surface

When α is constant, the yield condition can be written from Eqs.(9.122a) and (9.129b) as

f = σ + α I1 − τy(∆p, ϵp) = 0, (9.132)

and the initial yield condition can be expressed by the line in terms of I1 and σ as is shown in the upper figure of
Fig. 9.35. Or, in the three dimensional principal stress space, it corresponds to a circular cone in the lower figure,
where no yielding occurs in the compressive isotropic stress state. At P, since the stress state at the initial yielding
can be given by

σi j =
1

3α
δi j τy0, τy0 ≡ τy(0, 0),

from Eq.(9.129a), we have only the plastic volumetric expansion as

ϵ̇
p
i j =

αβ

H
δi j σ̇kk.
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Fig. 9.36 Yield loci of pressure sensitive model
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Fig. 9.37 Case of plastically plane strain state

In the bi-axial stress state in Sec. 9.3.3, if α < 1/√3 ≃ 0.577, the yield locus becomes ellipsoidal as σ√
3
+

√
3α τy

1 − 3α2

2

+
τ2

1 − 3α2 =

(
τy

1 − 3α2

)2
,

while it becomes parabolic when α = 1/√3 as

σ
√

3
τy +

1
2
τ2 =

1
2
τ2
y.

Moreover, if α > 1/√3, it becomes hyperbolic as σ√
3
−
√

3α τy
3α2 − 1

2

− τ2

3α2 − 1
=

(
τy

3α2 − 1

)2
.

These loci are curves of the intersection of the circular cone surface in Fig. 9.35 and the σi-σii plane. Therefore,
as is shown in Fig. 9.36, no yielding is likely to occur in the compressive states when α becomes large enough.

In order to evaluate the effect of β, we consider the plastically plane strain state. Namely, the plane strain
condition is applied to the flow rule of Eq.(9.125a) to obtain the corresponding stress state as

ϵ̇
p
31 = 0, ϵ̇

p
23 = 0 → σ31 = 0, σ32 = 0,

and

0 = ϵ̇p
33 = λ

(
σ′33

2σ
+ β

)
→ σ′33 = −2 βσ. (9.133a, b)

Then, Eq.(9.133b) is satisfied when

σ33 =
1
2

(σ11 + σ22) − ξ
2
, ξ ≡ 6β√

1 − 3β2

√(
σ11 − σ22

2

)2
+ σ2

12,

from which we have

σ′11 =
1
2

(σ11 − σ22) +
ξ

6
, σ′22 = −

1
2

(σ11 − σ22) +
ξ

6
, σ′33 = −

ξ

3

and thus the effective stress and the average stress are

σ2
=

(
σ11 − σ22

2

)2
+ σ2

12 +
ξ2

12
=

1
1 − 3β2

{(
σ11 − σ22

2

)2
+ σ2

12

}
, I1 =

1
2

(σ11 + σ22) − ξ
6
.

Hence, in the bi-axial stress state, the yield condition can be given by

(x + ηα)2

η (1 − αβ)2 +
y2

η
= 1, η ≡ 1 − 3β2

(1 − αβ)2 − (
1 − 3β2)α2

, x ≡ σ

2τy
, y ≡ τ

τy
,
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and its loci are shown in Fig. 9.37. In the manipulation above, we must have a restriction as

0 ≤ β < 1
√

3
.

Moreover, as will be explained in the next section, it is desirable to satisfy β < α. From these figures, α displaces
the yield locus toward the compressive direction, while β has an effect to reduce the radius of the locus when α is
large.

(5) Comparison with Drucker-Prager’s Model

The yield condition of Drucker-Prager’s model [16, 71] is given by

σ + αϕ I1 − k = 0. (9.134)

When α is constant in Eq.(9.122a), comparison of Eq.(9.132) with Eq.(9.134) shows that two parameters αϕ and k
correspond to α and τy in Eq.(9.132) respectively. On the other hand, Mohr-Coulomb’s failure criterion18

σmax − σmin

2
+
σmax + σmin

2
sin ϕ = c cos ϕ

is often used in the field of soil mechanics, where c is the cohesion, and ϕ is called the angle of internal friction.
And, σmax and σmin denote the maximum and minimum principal stresses respectively. Also, another expression
as

τϕ + σϕ tan ϕ = c, τϕ =
σmax − σmin

2
cos ϕ, σϕ =

σmax + σmin

2
+
σmax − σmin

2
sin ϕ. (9.135a, b, c)

is sometimes used. Or, using the Lode angle θl in Eq.(9.58), we can rewrite this condition as [57]

σ

(
cos θl −

1
√

3
sin θl sin ϕ

)
+

1
3

I1 sin ϕ − c cos ϕ = 0. (9.136)

Then the material parameters αϕ and k of the Drucker-Prager model can be approximately related to c and ϕ of the
Mohr-Coulomb criterion as [71, 102]

in triaxial compression: αϕ =
2 sin ϕ

√
3 (3 − sin ϕ)

, k =
6 c cos ϕ

√
3 (3 − sin ϕ)

, (9.137a)

in triaxial tension: αϕ =
2 sin ϕ

√
3 (3 + sin ϕ)

, k =
6 c cos ϕ

√
3 (3 + sin ϕ)

, (9.137b)

in plane strain: αϕ =
sin ϕ√

3
(
3 + sin2 ϕ

) , k =

√
3 c cos ϕ√

3
(
3 + sin2 ϕ

) . (9.137c)

For example, αϕ ≃ 0.16 ∼ 0.22 when ϕ ≃ 30 degrees. One can interpret that the Drucker-Prager model smoothens
the Mohr-Coulomb criterion which has corners on the failure surface [71].

On the other hand, β may be defined by some angle similar to αϕ in Eq.(9.137). In the soil mechanics, it is
well known that the plastic volume expansion becomes larger than the experimental observations if β is defined
by the same angle as that of the internal friction ϕ [71]. Therefore, another angle called the dilatancy angle ψ is
introduced to define the parameter β similarly to Eq.(9.137) in order to ensure the relation β < α.

Exercises 9-5

7. Derive Eq.(9.131) from Eq.(9.130).

18 The failure criterion τ = c − σ tan ϕ is tangential to the Mohr’s stress circle with its ordinate τ and its abscissa σ.
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9.4.3 Non-Coaxial Model
(1) Non-Coaxial Term in Flow Rule

Further modification may be necessary for materials with micro-structures such as defects, voids and joints like
sand and rock. For example, the corresponding macroscopic plastic behavior may not follow the normality rule.
In such a case, the incremental plastic strain can have a component tangential to the yield surface or a component
depending on the direction of the stress increment. One typical model is introduced in the reference [67]. Namely,
the incremental plastic strain component to the direction of the stress rate σ̇ is added to the basic Prandtl-Reuss
model in which the plastic strain rate ϵ̇p

pr is parallel to the direction of the deviatoric stress; i.e. ϵ̇p
pr ∥ σ′. A new

component ϵ̇p
nc is assumed to be (

ϵ̇
p
nc

)
i j
∥

{
σ̇′i j −

1

2σ2 σ
′
i j σ
′
kl σ̇kl

}
.

The important property of this term is that it does not create any plastic work. Multiplying the term above by σi j,
and considering Eq.(9.23b), we can show

σi j

(
ϵ̇

p
nc

)
i j
∼ σi j σ̇

′
i j −

1

2σ2 σ
′
i j σi jσ

′
kl σ̇kl = σ

′
i j σ̇
′
i j − σ′kl σ̇

′
kl = 0. (∗)

Hence, this new term is nothing to do with the Drucker stable condition of Eq.(9.60) suggesting some unstable
plastic characteristics. Adding this term into Eq.(9.74a), we can define a new flow rule by

ϵ̇
p
i j = λ

∂g

∂σi j
+

1
2 h1

(
σ̇′i j −

1

2σ2 σ
′
i j σ
′
kl σ̇kl

)
, (9.138)

i.e. the incremental plastic strain does not satisfy the coaxiality defined by Eq.(9.33b), and it is called the non-
coaxial model. Thus, h1 is a new material parameter representing the noncoaxiality.

ϵ̇ppr ∥ σ′

f = 0

ϵ̇pnc

Fig. 9.38 In the case of J2-
flow rule

Since another relation similar to Eq.(∗) holds for the product with the deviatoric
stress σ′i j in place of the stress itself, the second term in Eq.(9.138) ϵ̇p

nc is considered
to become normal to the direction of the deviatoric stress. Therefore, when the
associated J2 flow rule is employed, this new component ϵ̇p

nc is tangential to the
yield surface as is shown in Fig. 9.38, because the Prandtle-Reuss component; i.e.
the first term of Eq.(9.138) ϵ̇p

pr is parallel to the deviatoric stress direction.
Substituting the plastic potential of Eq.(9.122b) into the flow rule of Eq.(9.138),

we can express

ϵ̇p′
i j = λ

σ′i j

2σ
+

1
2 h1

(
σ̇′i j −

1

2σ2 σ
′
i j σ
′
kl σ̇kl

)
, ϵ̇

p
kk = 3 λ β.

In theory, λ can be evaluated by substitution of this equation into Eq.(9.127). In such a manipulation, the effective
plastic strain can be obtained as

2 ϵ̇p′
i j ϵ̇

p′
i j = λ

2 +
1

2 h2
1

{
σ̇′i j σ̇

′
i j −

1

2σ2

(
σ′i j σ̇

′
i j

)2
}
,

but the second term has been neglected19 hereafter in the reference [67]. So that λ is approximated by Eq.(9.128a);
i.e.

λ ≃ 1
H

(
σ′kl

2σ
+ α δkl

)
σ̇kl,

where H is defined by Eq.(9.128b). Putting this relation into Eq.(9.138), we can express the incremental plastic
strain by

ϵ̇
p
i j =

1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
σ̇kl +

1
2 h1

(
σ̇′i j −

1

2σ2 σ
′
i j σ
′
kl σ̇kl

)
. (9.139)

When the elastic part is given by Eq.(9.42), the additive description of Eq.(9.22) yields

ϵ̇i j =
1

2µ
σ̇i j +

1
3

(
1

3K
− 1

2µ

)
δi j σ̇kk (9.140)

+
1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
σ̇kl +

1
2 h1

(
σ̇′i j −

1

2σ2 σ
′
i j σ
′
kl σ̇kl

)
,

19 Please consult with the reference about this approximation. Because of this approximation, any step-by-step numerical calculations of this
model cannot satisfy the yield condition rigorously and fail.
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from which we can interpret that the last term with h1 has an effect to decrease the shearing resistance of the first
elastic term in the right-hand side.

When any coaxial plastic models are employed in the framework of the finite deformation, one criterion of
the incipience of localized deformations such as necking, slip line and shear band can hardly predict realistic
bifurcation stress levels as will be shown in Sec. 10.6. On the other hand, since the coefficient h1 of the non-coaxial
model reduces the tangential shear resistance as is apparent from Eq.(9.140), the localization can be predicted in
the practical range of the applied stress. However, since a further condition of h1 ≫ H must be satisfied in order
to accept the approximation of the flow rule explained above, the larger h1 becomes, the larger the bifurcation
stress levels become. Although the hardening parameter H is a tangent modulus of the elastic-plastic stress-strain
relations, this parameter h1 is interpreted as a secant modulus formulated within the framework of the deformation
theory [75].

9.4.4 Power Law Hardening
As the hardening parameter H generally becomes nonlinear in practical applications such as a sheet metal forming,
the so-called power law is often employed. One of such models expresses a uniaxial tensile stress-strain relation
in plane stress state by

σ =


E ϵ (σ ≤ σy)

σy

(
ϵ

ϵy

)m

(σ > σy)
, (9.141)

where E is Young’s modulus, and m (< 1) denotes a characteristic parameter of hardening. One example with
m = 0.0625 is shown in the left figure of Fig. 9.39. ϵy is the initial yield strain defined by ϵy ≡

σy
E

. Neglecting the
elastic part, we here evaluate the corresponding hardening coefficients from this rule. The model above represents
the uniaxial loading, so that σ and ϵ may be replaced by σ̃ and ϵ̃p of Eqs.(9.29b) and (9.30) respectively. On the
other hand, the coefficients H and h1 are defined in the relation between the effective stress and the effective plastic
strain defined by Eqs.(9.23b) and (9.27b). From these definitions, we have a relation as

σ̃

σy
=

√
3σ
√

3 τy
=
σ

τy
. (a)

Moreover, since

ϵy =
σy
E
=

√
3 τy
E
=
√

3
2µ
E

τy
2µ
=
√

3
1

2(1 + ν)
τy
µ
,

we obtain a relation as
ϵ̃p

ϵy
=

ϵp

√
3

2µ (1 + ν)
√

3 τy
=

2(1 + ν)
3

ϵp

γy
, γy ≡

τy
µ
, (b)

where µ is the shear modulus, and ν is Poisson’s ratio. In the definition of the initial yield shear strain γy of the last
equation of Eq.(b), µ is used in place of 2µ because the effective plastic strain is an engineering strain component.

Replace σ in Eq.(a) by τ. Also, replace ϵp in Eq.(b) by γ. Furthermore, replacing
σ

σy
in Eq.(9.141) by

σ̃

σy
i.e.

τ

τy
,

and replacing
ϵ

ϵy
by

ϵ̃p

ϵy
i.e.

2(1 + ν)
3

γ

γy
, we can rewrite the stress-strain relation as

τ

τy
=

(
2(1 + ν)

3
γ

γy

)m

,

where the Poisson ratio is included because manipulation is carried out for the uniaxial tension in plane stress state.
Finally, the corresponding shear resistance can be expressed by

τ =


2µ (1 + ν)

3
γ (τ ≤ τy; γ ≤

3 γy
2(1 + ν)

)

τy

(
2(1 + ν)

3
γ

γy

)m

(τ > τy)
. (9.142)

The hardening coefficient H can be defined by the slope of the stress-strain relation as

H ≡ dτ
dγ
= m

τy
γy

2(1 + ν)
3

{
2(1 + ν)

3
γ

γy

}m−1

=
m E

3

{
2(1 + ν)

3
γ

γy

}m−1

.
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Fig. 9.39 Power laws

Also, since h1 is interpreted as the secant modulus, we can define a proper coefficient satisfying H < h1 by

h1 ≡
τ

γ
=
τy
γy

2(1 + ν)
3

{
2(1 + ν)

3
γ

γy

}m−1

=
E
3

{
2(1 + ν)

3
γ

γy

}m−1

, H = m h1 < h1. (9.143a, b)

As for the Poisson ratio, if it is considered to be an apparent material parameter in the large plastic strain state
of the elastic-plastic body, it may be approximated to be ν = 1/2 because the metal plasticity has incompressible
property. Then, the power law above can be rewritten as

τ =


µ γ (τ ≤ τy; γ ≤ γy)

τy

(
γ

γy

)m

(τ > τy)
, (9.144)

and the two hardening coefficients become

H
µ
= m

(
γ

γy

)m−1

,
h1

µ
=

(
γ

γy

)m−1

. (9.145a, b)

Only one parameter m must be identified in some experiments, and γ can be replaced by the effective plastic strain
ϵp. Or, more simply, from the two kinds of the plastic strain norms, the initial yield strain may be defined by
ϵy =

γy√
3

. Then, Eq.(9.141) becomes a model as

σ̃

σy
=

√
3σ
√

3τy
=

 ϵp

√
3

√
3

γy

m

→ σ

τy
=

(
ϵp

γy

)m

. (9.146a, b)

We have an alternative power law called the modified Ludwik model [78, 85], which defines the yield function
by

f ≡ σ̃ − {
σy + h

(
ϵ̃p)n} . (9.147)

Since this model is also based on the uniaxial tensile test, the effective stress and the effective plastic strain of
Eqs.(9.29) and (9.30) are used. Then, it can be converted to the shearing yield function as

f ≡ σ −
{
τy +

h
√

3

(
ϵ̃p)n

}
= σ −

τy + h(√
3
)n+1

(
ϵp)n

 . (9.148)

The corresponding hardening coefficient H can be evaluated by its definition of Eq.(9.64b) as

H =
∂τy

∂ϵp =
∂τy
∂ϵ̃p

∂ϵ̃p

∂ϵp =
1
√

3

∂τy
∂ϵ̃p =

h n
3

(
ϵ̃p)n−1

=
h n(√
3
)n+1

(
ϵp)n−1

. (9.149)

Several examples are depicted in the right figure of Fig. 9.39.



Chapter 10

Finite Deformation Theory

10.1 What is Finite Deformation?
The word ‘finite’ does not mean ‘bounded’ but has a meaning opposite to ‘infinitesimal;’ i.e. ‘large.’ However, it
does not always imply1 that the material nonlinearity must be taken into account. We here put emphasis mainly on
the geometric nonlinearity in the theory of finite deformation.

Product symbols: For simplicity, symbols to express products of the same order tensors appeared in both sides
of equations are omitted; e.g.

A = B·C = BC
(
Ai j = Bik Ck j

)
, D = S:Q = SQ

(
Di jkl = Si jmn Qmnkl

)
,

while the following symbols are used otherwise;

s = u·u
(
s = u j v j

)
, u = A·u = w·B

(
ui = Ai j v j = w j B ji

)
, w = u × u

(
wi = ei jk u j vk

)
,

t = A:B
(
t = Ai j Bi j

)
, A = D:B

(
Ai j = Di jkl Bkl

)
,

A = u ⊗ w
(
Ai j = vi w j

)
, Q = A ⊗ B

(
Qi jkl = Ai j Bkl

)
.

And, matrices are denoted by symbols with parentheses as follows;(
A

)
=

(
B

) (
C

) (
A = BC, Ai j = Bik Ck j

)
.

10.2 Strains and Strain Rates

10.2.1 Deformation and Strain
(1) Kinematics and Deformation Gradient

g1 1
g33

g2

2

t = 0

t = tX

G1(0)
G2(0)

G3(0)
x(X, t)

G1

G2G3

Fig. 10.1 Base vectors and configurations

Let t define a monotonically increasing inde-
pendent variable called time to indicate history
of deformation of continua as has been also de-
fined in Chap. 9. However, this variable t is not
necessarily the real ‘time’ because dynamic re-
sponses or the viscoelasticity are not topics of
this chapter. The body is stated to be in the ini-
tial configuration at time t = 0. By many kinds
of actions from outside, the body displaces, de-
forms and occupies some region of the space in
a current configuration at time t = t. First of
all, a spatially fixed rectangular Cartesian coor-
dinate system is introduced, and its unit base vectors are denoted by gi (i = 1, 2, 3). Also, these base vectors are
embedded into the body in the initial configuration. The embedded base vectors in the current configuration are
denoted by GI(t) (I = 1, 2, 3) at t = t, and they satisfy GI(0) = gi (I = i) at t = 0. After undergoing arbitrary

1 For example, cables can displace tremendously with very small deformation in the range of elasticity.
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deformation, the base vectors move, rotate and deform according to the deformation of the body. The coordinate
system defined by these embedded base vectors is called the embedded coordinate system. As is illustrated in
Fig. 10.1, it forms a general curvilinear coordinate system, and the base vectors GI are no longer unit and be-
come non-orthogonal to each other. Incidentally, the configuration when tensors are defined is called the reference
configuration.

For the time being, most physical quantities i.e. most tensors are defined in the initial state as their reference.
Let X = XI gI denote the position vector of each material point of the body in the initial configuration. The
upper-case letters are used for the subscripts when the tensors are defined referring to the initial configuration; i.e.
when the material points X are traced during deformation. However, note that gI = gi and XI = Xi (I = i). The
position vector in the current configuration at t = t of the material point X is denoted by x(X, t) = xi(X, t) gi. Then,
the displacement vector (tensor) u of the material point can be defined by the difference between the two position
vectors in the initial and current configurations as

u = UI(X) gI = ui(x) gi ≡ x − X, UI(X) ≡ xi(X) − XI , ui(x) ≡ xi − XI(x), (I = i), (10.1a, b, c)

where the last expression can become possible when the inverse relation such as Eq.(10.15) holds.

(2) Definitions of Deformation and Strain

Deformation may be defined by the changes of lengths and angles of arbitrary differential elements, which can be
expressed in the initial and current configurations by

dX = dXI gI , dx = dxi gi,

respectively. Application of the chain rule to the second equation results in a definition as

dx = FiJ(X) dXJ gi, FiJ(X) ≡ ∂xi(X)
∂XJ

= xi,J , (10.2a, b)

where a comma in the subscript represents the (covariant) differentiation with respect to the independent variable
indicated by the following subscript. The tensor F is called the deformation gradient. Substituting Eq.(10.1) into
this equation, we can express the deformation gradient as

FiJ = (XI + UI),J = δIJ + UI,J , (I = i), (10.3)

where δIJ is the Kronecker delta. Incidentally, since the embedded base vectors GI are attached to the vector dX
in the initial configuration, the following manipulation yields a relation to the spatially fixed base vectors as

dx = dx j g j = x j,I dXI g j = F jI g j dXI = GI dXI → GI = F jI g j. (10.4)

Or, this may be considered as a definition of the embedded base vectors GI .
In order to define a measure of deformation, let us estimate the length of a differential element ds in the current

configuration. Namely, using Eq.(10.2), we can express it by

(ds)2 = dx · dx =
(
FiJ dXJgi

) · (FiK dXKgi
)
= FiJ FiK dXJ dXK , (10.5)

from which a new measure C(X) can be defined by

(ds)2 = CIJ dXI dXJ , CIJ(X) ≡ FkI FkJ = xk,I xk,J , C = Ft F,
(
C

)
≡

(
F

)t (
F

)
, CIJ = CJI .

(10.6a, b, c, d, e)
This tensor C(X) is called the right Cauchy-Green deformation tensor. Similarly, since the length of the differ-
ential element of Eq.(10.5) in the initial configuration can be expressed by

(dS )2 = dX · dX = δJK dXJ dXK , (10.7)

another measure of deformation can be defined by the change of the squared lengths of the differential elements as

2 EIJ dXI dXJ ≡ (ds)2 − (dS )2 , (10.8)

and E(X) is called the Green strain. Substituting Eq.(10.5) into this definition, and considering Eq.(10.6), we
obtain

E(X) ≡ 1
2

(C − I) , EIJ(X) =
1
2

(CIJ − δIJ) =
1
2

(FkI FkJ − δIJ) , EIJ = EJI , (10.9a, b, c)
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where the tensor I is called the identity tensor of the second order and has components given by the Kronecker
delta (or a proper metric tensor). Or, using Eq.(10.4), we can write

EIJ =
1
2

(
GI · GJ − gi · g j

)
(10.10)

which shows a physical meaning of this strain tensor more clearly. Namely, although the manipulation above is
simply based on the change of the lengths of the differential elements, the Green strain tensor E(X) expressed by
the ‘inner products’ in Eq.(10.10) has characteristics of the changes of not only the lengths of the embedded base
vectors but also the angles between the base vectors. Furthermore, substitution of Eq.(10.3) into this definition
yields an expression2 in terms of the displacement as

EIJ =
1
2

{(
δKI + UK,I

) (
δKJ + UK,J

) − δIJ
}
=

1
2

{
δIJ + UI,J + UJ,I + UK,I UK,J − δIJ

}
=

1
2

(
UI,J + UJ,I + UK,I UK,J

)
. (10.11)

Neglect of the nonlinear term results in the strain expression of Eq.(2.6) in the infinitesimal deformation theory.
Independent variables of this strain tensor are the position vector X of the material points in the initial configuration;
i.e. the tensor refers to the initial state as its reference configuration, but it represents the deformation at the position
x in the current configuration. This kind of description is called the Lagrangian description of tensors. Therefore,
its strain components correspond to the strains traced and measured by strain gauges attached to a material point

during experiments. However, for example, the component E11 = 1/2

(
|G1|2 −

∣∣∣g1

∣∣∣2) represents the change of the
squared lengths, and thus it does not have the same value as the measurement by the strain gauge. Incidentally, the
following definition called the ‘elongation’ cannot be used as a strain measure;

elongation ≡ (dx − dX) · dX
dX · dX

,

because it is simply the displacement gradient defined by(
elongation

)
iJ = FiJ − δiJ = ui,J = UI,J (10.12)

which includes not only deformation but also rigid-body rotation as will be explained in the next section.
Finally, the differential volume element dv in the current configuration can be defined by

dv ≡ G1 · (G2 × G3) dV, dV ≡ dX1 dX2 dX3,

and substitution of Eq.(10.4) leads to

dv
dV
≡ F j1Fk2Fl3 g j ·

(
gk × gl

)
= F j1Fk2Fl3 g j · eikl gi = F j1Fk2Fl3 δ ji eikl = F j1Fk2Fl3 e jkl = det ( FiJ ) ,

where ei jk is the permutation symbol given by Eq.(D.15). Therefore, we can express it as

dv
dV
= J ≡ det ( FiJ ) = det

(
∂xi

∂XJ

)
=

1
6

ei jk eIJK FiI F jJ FkK , (10.13)

where J is called the Jacobian. When mass densities in the initial and current configurations are denoted by ρ0
and ρ respectively, the conservation law of mass demands a relation as

ρ0 dV = ρ dv → J =
ρ0

ρ
. (10.14)

Therefore, J remains positive definite and bounded during arbitrary deformation paths, and a matrix form of the de-
formation gradient has a unique inverse matrix. Furthermore, when the position vector in the current configuration
is expressed by a function as

x = f (X, t), FiJ =
∂xi

∂X j
,

2 In an arbitrary coordinate system, we must write EIJ = 1/2
(

UI |J + UJ |I + UK
∣∣∣
I UK |J

)
using proper combinations of the covariant and

contravariant components and the covariant derivatives expressed by ‘
∣∣∣’ (see App. D).
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we can have a unique inverse relation as

X = f−1(x, t),
(
F−1

)
I j
=
∂XI

∂x j
. (10.15a, b)

Since the matrix
(

F
)

is a 3 × 3 matrix, its inverse can be calculated by

(
F−1

)
I j
=

1
2J

eIMN e jmn FMm FNn,

where
(

1/2 eIMN e jmn FMm FNn

)
is the cofactor matrix of the matrix

(
F

)
.

(3) Deformation and Rigid-Body Rotation

It should be noted that the deformation gradient and the displacement gradient include not only the deformation
but also the rotation. On the contrary, it is expected that the deformation tensor C and the Green strain tensor E
have only the straining part which represents genuine resistance characteristics of the body. We here try to extract
a rotation part R from the deformation gradient. In general, a rotation can be expressed by a matrix

(
R

)
which has

the following characteristics; (
R

)−1
=

(
R

)t
, det ( R ) = +1, (10.16a, b)

i.e. the same as the properties of the coordinate transformation (orthonormal) matrix. Now, we can decompose the
deformation gradient into the following two parts as

F = R U, FiJ = RiK UKJ , RiK R jK = δi j, RiM RiN = δMN , UKJ = UJK , (10.17a, b, c, d, e)

which is called the polar decomposition theorem. It is known that the tensor U(X) becomes symmetric, and this
tensor U represents a pure deformation component in the deformation gradient F. Substitution of this relation into
Eq.(10.6) yields another expression of the deformation tensor C as

CIJ = FkI FkJ = (RkM UMI) (RkL ULJ) = UMI ULJ RkM RkL = UMI ULJ δML = ULI ULJ , (10.18a)

C = Ft F = UtU,
(
C

)
=

(
F

)t (
F

)
=

(
U

)t (
U

)
, (10.18b, c)

revealing that the deformation tensor C does not have the rotational component. Therefore, the Green strain tensor
E in Eq.(10.9) is also free from the rotation. This tensor U is called the right stretch tensor, and its principal
values are the principal stretches. Derivation of these two important tensors R and U will be explained later on.

Letting Λ(I) and N(I) (I = 1, 2, 3) denote the principal stretches and their principal directions (unit vectors)
respectively, we can express U in the matrix form as

(
U

)
=

(
N

) [
Λ

] (
N

)t
,

[
Λ

]
≡

 Λ(1) 0 0
0 Λ(2) 0
0 0 Λ(3)

 , (10.19a, b)

(
N

)
≡

(
N(1) N(2) N(3)

)
,

(
N

)−1
=

(
N

)t
, (10.19c, d)

where the matrix using the bracket
[
·
]

is a diagonal matrix. Since
(

U
)

is a positive-definite symmetric real matrix,
its principal values are positive real numbers, and their principal directions can be chosen to form an orthonormal
set. Substituting this expression into Eq.(10.18), we can express the deformation tensor in the matrix form as(

C
)
=

(
F

)t (
F

)
=

(
U

)t (
U

)
=

{(
N

) [
Λ

]t (
N

)t} {(
N

) [
Λ

] (
N

)t}
=

(
N

) [
Λ2

] (
N

)t
. (10.20)

Since
[
Λ

]
is a diagonal matrix,

[
Λ2

]
is also a matrix with Λ2

(I) in its diagonal elements. Therefore, we can
conclude that

• Let N(N) denote the principal directions of the deformation tensor C.

• Let Λ2
(N) denote the principal values of C,
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and the right-stretch tensor U has the principal values Λ(N) with the same principal directions as those of C. In the
matrix form, these relations are written as(

U
)
=

(
C

)1/2
,

(
C

)
=

(
U

)2
. (10.21a, b)

Or, we usually express them by the spectral representation as

U =
3∑

N=1

Λ(N) N(N) ⊗ N(N),
(

U
)
=

(
N

) [
Λ

] (
N

)t
, (10.22a, b)

C =
3∑

N=1

Λ2
(N) N(N) ⊗ N(N),

(
C

)
=

(
N

) [
Λ2

] (
N

)t
(10.22c, d)

by the direct notation. Then, the following calculation determines
(

U
)

and
(

R
)
;

1. By the eigenvalue analysis of the matrix
(
C

)
, obtain its principal values and directions.

2. Using square roots of the principal values and the corresponding principal directions, we can find
(

U
)

from
Eq.(10.22b).

3. Finally, from Eq.(10.17), the rotation can be evaluated as follows;(
F

)
=

(
R

) (
U

)
→

(
R

)
=

(
F

) (
U

)−1
.

Also, the Green strain tensor can be written by the spectral representation as

E =
3∑

N=1

1
2

(
Λ2

(N) − 1
)

N(N) ⊗ N(N),
(

E
)
=

(
N

) [
1
2

(
Λ2 − 1

) ] (
N

)t
. (10.23a, b)

Therefore, the physical meanings of C and E are not so clear from a kinematical point of view, because their
principal values are given by squared values of the principal stretches Λ. For example, components E11 and E22
in Eq.(10.10) are squared stretches in the two nonorthogonal directions. Furthermore, a component E12 includes
squared lengths of the two base vectors G1 and G2. Therefore, it does not seem to be straightforward to use this
tensor E directly in any constitutive relations. From a viewpoint of constitutive laws, some kinds of physical
components of the corresponding tensor such as√

1 + 2 E11 − 1,
E12√

1 + 2 E11
√

1 + 2 E22
(10.24a, b)

seem to be appropriate to use.

(4) Eulerian Quantities

An alternative polar decomposition in its order of operation opposite to that of Eq.(10.17) is possible as

F = u R, FiJ = vik RkJ , vik = vki, (10.25a, b, c)

where u is a new stretch tensor. Substitution of this equation into Eq.(10.6) yields relations as

CIJ = FkI FkJ = (vkl RlI) (vkm RmJ) = RlI vkl vkm RmJ = RlI blm RmJ , blm ≡ vkl vkm = vlk vmk, (10.26a, b)

where a new quantity b is introduced. Then, multiplying the rotation to this relation Eq.(10.26a) from its left and
right sides, we can express b in another form as

RiI CIJ R jJ = RiI RlI blm RmJ R jJ = δil blm δm j = bi j

which indicates that the tensor b represents the essential deformation component observed in a rotated coordinate
system.
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Using the inverse relation in Eq.(10.15), we can express the differential element of dS in Eq.(10.7) as

(dS )2 = dX · dX = XI, j dx j gI · XJ,k dxk gJ = XI, j XI,k dx j dxk =
(
F jI FkI

)−1
dx j dxk. (10.27)

Substituting the polar decomposition of Eq.(10.25) into the part F jI FkI in the above equation results in another
expression of b jk in Eq.(10.26) as

F jI FkI =
(
v jl RlI

)
(vkm RmI) = RlI v jl vkm RmI = v jl vkm δlm = v jl vkl = b jk.

Eventually, we have another definition and other relations as

b ≡ F Ft = u ut, b jk ≡ F jI FkI = v jl vkl, (dS )2 =
(
b jk

)−1
dx j dxk, b jk = bk j. (10.28a, b, c, d)

The tensor b(x) is called the left Cauchy-Green deformation tensor and is an Eulerian description of deformation
corresponding to the right Cauchy-Green deformation tensor C(X) by the Lagrangian description. Similarly, the
tensor u(x) is a counterpart of U(X) and is called the left stretch tensor. It is quite interesting that the principal
values of u are the same as those of U, and the following spectral representations3 hold

u =
3∑

n=1

Λ(n) n(n) ⊗ n(n),
(
v
)
=

(
n
) [
Λ

] (
n
)t
, (10.29a, b)

b =
3∑

n=1

Λ2
(n) n(n) ⊗ n(n),

(
b
)
=

(
n
) [
Λ2

] (
n
)t
, (10.29c, d)

where
Λ(n) = Λ(N),

(
n
)
≡

(
n(1) n(2) n(3)

)
,

(
n
)−1
=

(
n
)t
. (10.30a, b, c)

And, the relation between the principal directions n(n) and N(N) is given by

n(n) = R·N(N), n(n)
i = RiJ N(N)

J ,
(

n
)
=

(
R

) (
N

)
. (10.31a, b, c)

Therefore, the principal directions n(n) are the directions of the principal stretches in the spatially fixed
coordinate system, while the directions N(N) indicate the principal directions in the embedded coordinate
system: e.g. see Eqs.(10.36) and (10.37). Incidentally, between the two tensors u and U, there exists the following
relation; (

F
)
=

(
R

) (
U

)
=

(
v
) (

R
)
→

(
v
)
=

(
R

) (
U

) (
R

)t
, vi j = RiK UKL R jL. (10.32a, b)

A new strain measure e(x) as a counterpart of the Green strain in Eq.(10.8) can be defined by

2 ei j dxi dx j ≡ (ds)2 − (dS )2 .

Substituting Eq.(10.27) into this definition, and using a relation as

XJ,k = δJk − u j,k(x), j = J

we can rewrite this strain tensor e(x) as

ei j(x) =
1
2

(
δi j − bi j

)
=

1
2

(
ui, j + u j,i − uk,i uk, j

)
(10.33)

which is called the Almansi strain. It should be noted that, in this strain measure, the displacement expressed by
the lower-case letter u is treated as a tensor function of the current position x, and thus the derivatives are taken
with respect to the independent variables x of the spatially fixed coordinate system; i.e. the lower-case letters are
used in the indices following commas. Namely, while the Green strain is a measure of deformation of the material
points traced during deformation, the Almansi strain represents deformation observed at particular points in space.
The latter approach is called the Eulerian description. One typical example of the Eulerian description is an
observation of fluid flow in a channel by fixed-point cameras through its transparent side wall. Also, for solids, an
observation by contact-less devices to measure displacements and strains corresponds to the Eulerian description.
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Fig. 10.2 Examples of stretch tensors

However, the Lagrangian description must be employed for solids when histories of (especially inelastic) defor-
mation of the material points must be memorized. For fluids, an experiment to trace markers in the flow to obtain
their trajectories is an example of the Lagrangian approach.

A simple example will show you clear physical meanings of the tensors introduced above. The left figure of
Fig. 10.2 shows a kinematics of a body stretched by Λi to the spatially fixed coordinate directions and rotated
within the x1-x2 plane. Its deformation gradient can be given by

(
F

)
=

(
∂xi

∂XJ

)
=

(
xi,J

)
=

 cosα − sinα 0
sinα cosα 0

0 0 1


 Λ1 0 0

0 Λ2 0
0 0 Λ3

 =
 Λ1 cosα −Λ2 sinα 0
Λ1 sinα Λ2 cosα 0

0 0 Λ3

 . (10.34)

Therefore, by the polar decomposition theorem, we obtain

(
R

)
=

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (
U

)
=

 Λ1 0 0
0 Λ2 0
0 0 Λ3

 . (10.35a, b)

Since
(

U
)

is a diagonal matrix, its principal values are Λ(N) = ΛN , and their directions are

N(1) =


1
0
0

 , N(2) =


0
1
0

 , N(3) =


0
0
1

 . (10.36a, b, c)

Namely, the body is stretched to the xi-directions of the body in the initial configuration. In other words, the

principal directions are the directions of the embedded base vectors
GI

|GI |
. Then from Eq.(10.31), we have

n(1) =


cosα
sinα

0

 , n(2) =


− sinα
cosα

0

 , n(3) =


0
0
1

 (10.37a, b, c)

which are the directions of the three principal stretches ΛI with respect to the spatially fixed coordinate system in
the current configuration. Furthermore, from either Eq.(10.29) or Eq.(10.32), the left stretch tensor is obtained as

(
v
)
=

 Λ1 cos2 α + Λ2 sin2 α (Λ1 − Λ2) sinα cosα 0
(Λ1 − Λ2) sinα cosα Λ1 sin2 α + Λ2 cos2 α 0

0 0 Λ3

 .
These two stretch tensors U and u are depicted in Fig. 10.2. Namely, the components of u represent (quite weird)
stretches of the rotated body in the directions of the spatially fixed base vectors gi. From this example, we hope
that the difference between N and n becomes clear for most readers.

Finally, in order to evaluate the Green strain tensor, let us calculate the displacement gradient from Eq.(10.34)
to obtain (

UI,J

)
=

 Λ1 cosα − 1 −Λ2 sinα 0
Λ1 sinα Λ2 cosα − 1 0

0 0 Λ3 − 1

 .
3 These new tensors b and u essentially represent the same physical quantities as those by C and U, and the difference exists only in the

definition of the rotation. Therefore, they are usually expressed by the upper-case letters as B and V. However, the lower-case letters are
employed in this textbook, because they are functions of the spatially fixed coordinate system and are given by the spectral representation
in terms of the principal directions n(n) in the current configuration.
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Substituting this equation into Eq.(10.11), we have no shearing components with

E11 =
1
2

(
Λ2

1 − 1
)
, E22 =

1
2

(
Λ2

2 − 1
)
, E33 =

1
2

(
Λ2

3 − 1
)
. (10.38a, b, c)

The same expressions can be obtained from the spectral representation in Eq.(10.23) using Eqs.(10.35b) and
(10.36). As has been mentioned before, they include squared stretches so that the physical meanings are not
clear at all. However, if some corresponding physical components of the Green strain can be defined as is shown
in the formulation of the Bernoulli-Euler beam theory in Sec. B.2, the resulting equations become to have clear
physical meanings.

(5) Physical Meanings of Strain — What are Strains?

γ

γ
a

a

2

O
1

Fig. 10.3 Pure shear and biaxial
stretch

In constructing any constitutive models, we must choose proper measures of
deformation which characterize some ‘feelings’ of resistance by the materials,
although the materials cannot speak. In other words, such measures must di-
rectly express the essential strains from a physical point of view. As far as the
definitions given above are concerned, the deformation tensor C and the Green
strain tensor E are not appropriate to use, but the stretch tensors U and u may
become candidates. Suppose that a 1 × 1 square deforms with no rotational
component to become a parallelogram with two sides of length a and included
angles π/2 ± 2γ as is shown in Fig. 10.3. Then, the corresponding deformation
gradient becomes

(
FiJ

)
=

(
UIJ

)
=

(
vi j

)
=

 a cos γ a sin γ 0
a sin γ a cos γ 0

0 0 Λ3

 , (10.39)

where Λ3 is the stretch to the x3-direction. Since no rotation occurs, R = I, and F = U = u. The eigenvalue
analysis of U is carried out as

det

 a cos γ − Λ a sin γ 0
a sin γ a cos γ − Λ 0

0 0 Λ3 − Λ

 = 0 →
{
(a cos γ − Λ)2 − a2 sin2 γ

}
(Λ3 − Λ) = 0,

and the principal stretches are obtained as

Λ(1) = a (cos γ + sin γ) , Λ(2) = a (cos γ − sin γ) , Λ(3) = Λ3, (10.40a, b, c)

with the corresponding principal directions

N(1) =
1
√

2


1
1
0

 , N(2) =
1
√

2


1
−1
0

 , N(3) =


0
0
1

 , n(n) = N(N). (10.41a, b, c, d)

Namely, the stretch Λ(1) is oriented to the direction 45 degrees counterclockwise from the x1-axis, while the stretch
Λ(2) occurs to the direction normal to that ofΛ(1). And, the lengthsΛ(1) andΛ(2) coincide with two diagonal lengths
of this parallelogram. Since the principal stretch Λ and the angle change γ are physical and measurable quantities,
the right stretch tensor U can be considered as a candidate of the physical strain measures.

Extension: First of all, an extension can be represented by the measurement of the change of gauge length in a

tensile test; i.e.
(

current length − initial length
initial length

)
. Such an extensional strain ϵE can be evaluated by

ϵE ≡ a − 1 (10.42)

in this figure; or it is equivalent to the principal stretch minus one when γ = 0. When the length is doubled
(a = 2), we have ϵE = 1, but ϵE = −0.5 when the length becomes half (a = 1/2). This situation may not be so
straightforward. On the other hand, a logarithmic strain ϵL can be defined by

ϵL ≡ ln(a). (10.43)
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Fig. 10.4 How extension is evaluated by each strain tensors

In this case, ϵL = 1 corresponds to a stretching as a = e ≃ 2.72, while ϵL = −1 implies a = 1/e ≃ 1/2.72 =

0.368. Therefore, in comparison with ϵE , ϵL is a more comprehensible measure of strain and thus is often used in
constructing constitutive models.

Since the extensional strain and logarithmic strain introduced above have more clear physical meanings than
the Green strain, we here generalize these strains in three-dimensions using U from Eqs.(10.42) and (10.43) to
define

EE(X) ≡ U − I, EL(X) ≡ ln (U) . (10.44a, b)

These are the extensional strain and the logarithmic strain respectively. Although the extensional strain EE(X)
looks similar to the inappropriate measure of deformation called ‘elongation’ in Eq.(10.12), it can be one of the
proper measures beause U does not include the rotational part. In the spectral representation, we have

EE(X) =
3∑

N=1

(
Λ(N) − 1

)
N(N) ⊗ N(N),

(
EE

)
=

(
N

) [
Λ − 1

] (
N

)t
(10.45a, b)

which is also known as Biot’s strain tensor. And, the spectral expression of the logarithmic strain tensor EL(X)
is also given by

EL(X) =
3∑

N=1

ln
(
Λ(N)

)
N(N) ⊗ N(N),

(
EL

)
=

(
N

) [
lnΛ

] (
N

)t
. (10.46a, b)

In the example above, from Eqs.(10.39), (10.40) and (10.41), strain components in the x1-x2 plane are

EE
11 = EE

22 = a cos γ − 1, EE
12 = a sin γ, (10.47a, b)

EL
11 = EL

22 =
1
2

ln
{
a2

(
cos2 γ − sin2 γ

)}
=

1
2

ln
(
Λ(1)Λ(2)

)
, EL

12 =
1
2

ln
(

cos γ + sin γ
cos γ − sin γ

)
. (10.47c, d)

As for the extensional strain, a shear component EE
12 includes the stretch a, and a normal component EE

11 also has
the angle change γ. On the contrary, a shear component EL

12 of the logarithmic strain is given by only the angle
change, and its normal component EL

11 includes only the principal stretches. On the other hand, the Green strain E
in Eq.(10.9) by the Langrangian description has components as

E11 = E22 =
1
2

(
a2 − 1

)
, E12 = a2 sin γ cos γ, (10.48a, b)

and, both components have a2 as has been explained before.
Eqs.(10.35), (10.38), (10.39), (10.47) and (10.48) from Figs. 10.2 and 10.3 can be geometrically interpreted as

follows;

Stretch U: stretches and angle changes in a coordinate system with the base vectors R·gi.

Extensional strain EE: extensional strains and angle changes in a coordinate system with the base vectors R·gi.
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Logarithmic strain EL: similar to the extensional strain. But the components of extension and angle change
are separated. Hence, it seems to be appropriate to use this measure in constitutive models because its
components may be evaluated directly from experimental data.

Green’s strain E: some kinds of deformation measures in an embedded curvilinear coordinate system with the

base vectors
GI

|GI |
. Quantity rather mathematical than physical.

It should be noted that all these tensors are rather mathematical, so that it may not be so easy to construct constitu-
tive models by using experimental data to evaluate these tensor components. However, especially for solids, these
Langrangian quantities are more usefull because minitoring devices such as strain gauges are installed directly on
the body during experiments.

Fig. 10.4 illustrates relations between three components of these strain tensors and an extension of the side
length in the forms of (a− 1) or ln(a). The abscissas span from half to twice the initial length. Note that the values
of EE

11 and EL
11 are calculated from Eq.(10.47) by setting γ = 0. As far as deformations are small enough, of course,

there exist negligibly small differences between tensors.
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Fig. 10.5 How about shearing strain?

Angle change: Fig. 10.5 shows shear components of the
three strain tensors, in which abscissa is an angle change
γ divided by π and spans |γ| < π/4. Note that the values
of EE

12 and E12 are calculated from Eq.(10.47) and (10.48)
by setting a = 1. Again, the differences between tensors
are negligible when deformations are small, but, as the an-
gle change becomes large, only the logarithmic strain EL

12
increases rapidly to infinity. However, it is rather natural
because, as γ approaches to ±π/4, the volume of this par-
allelgram becomes significantly small. In other words, it
is reasonable for the shear strain to become large when
γ → ±π/4.

On the other hand, two components EE
12 and E12 are

bounded even when γ ≃ ±π/4. This is because we evaluate
these by setting a = 1, although this situation cannot hold
when γ becomes large. Namely, because of the conserva-
tion law of mass, a and Λ3 must also become large as γ approaches to π/4. So that these tensor components must
become very large according to the increase of a andΛ3. In other words, the effect of the stretches must be included
in the shearing components of the extensional and Green strain tensors.

10.2.2 Rate of Change of Deformation

(1) Strain Rates

Most engineering materials show plastic properties, in which the flow rule is usually defined in terms of the
increments or rates of change of deformation as has been explained in Chap. 9. In such cases, since the incremental
strains are given by instantaneous rates of change in the current configuration, we first introduce the Eulerian
description of the strain rates. The velocity vector u(x) of a material point X located at a location x in the current
configuration is defined by

V(X, t) = VI(X, t) gI ≡
∂xi(X, t)
∂t

gI = ẋi(x, t) gI = ẋi(x, t) gi = vi(x, t) gi = u(x, t), (10.49)

where the super-dot represents the increment or the differential with respect to time (configuration or history of
deformation). Then, the rate of change of the deformation gradient is expressed by

ḞiJ = ẋi,J = vi,J = vi,k xk,J , Ḟ = l F, lik ≡ vi,k. (10.50a, b, c)

A new quantity l(x) is called the velocity gradient and satisfies

l = Ḟ F−1,
(

l
)
=

(
Ḟ

)(
F

)−1
=

(
∂ v

)
. (10.51a, b)
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Next, the rate of change of the Green strain in Eq.(10.9) can be evaluated by

ĖIJ =
1
2

(
ḞkI FkJ + FkI ḞkJ

)
=

1
2

(lkm FmI FkJ + FkI lkm FmJ)

=
1
2

(lkm FmI FkJ + lmk FmI FkJ) =
1
2

(lmk + lkm) FmI FkJ ,

in which a new quantity d(x) is defined by

ĖIJ = dmk FmI FkJ , dmk ≡
1
2

(lmk + lkm) =
1
2

(
vm,k + vk,m

)
, (10.52a, b)

Ė = Ft d F,
(

Ė
)
=

(
F

)t(
d
)(

F
)
, d =

1
2

(
l + lt

)
,

(
d
)
=

1
2

{(
l
)
+

(
l
)t}

, (10.52c, d, e, f)

and is a typical strain rate called the deformation rate. Although the velocity gradient includes a rotational rate,
multiplication of the deformation gradient F as Eq.(10.52c) removes a part of rotation, and the velocity gradient
eventually represents a rate of change of genuine deformation part; i.e. strain rate. This may look like a velocity
expression of the definition of the strain in Eq.(2.6) of the infinitesimal deformation theory, but you should notice
that the independent variable is not a material point X but a current location x, and that the derivatives are taken
with respect to the spatially fixed coordinates x denoted by the lower-case letters after commas in the subscripts.
Roughly speaking, a component d11 can be interpreted as a rate of change of the logarithmic strain, because

d11 =
∂ẋ1

∂x1
≃ ∆ẋ1

∆x1
=

(∆x1)˙
∆x1

= {ln (∆x1)}˙.

(2) Spin

We also need to define some rates of change of rotation included in the deformation gradient F. For example, the
rotational part R of the polar decomposition of Eq.(10.17) may yield one definition of such rates, ωR(x), as

Ṙ = ωR R, ṘiJ = ω
R
ik RkJ ,

(
Ṙ

)
=

(
ωR

) (
R

)
. (10.53a, b, c)

Moreover, other rotational rates ΩL(X) and ωE(x) can be defined [59] by the rates of change of the principal
directions N(I) and n(i) of the stretch tensors U and u respectively as

Ṅ(I)
= ΩL·N(I), Ṅ(I)

J = Ω
L
JK N(I)

K ,
(

Ṅ
)
=

(
ΩL

) (
N

)
, (10.54a, b, c)

ṅ(i) = ωE ·n(i), ṅ(i)
j = ω

E
jk n(i)

k ,
(

ṅ
)
=

(
ωE

) (
n
)
. (10.54d, e, f)

Note that the antisymmetry as ΩL
MN = −ΩL

NM , ωE
mn = −ωE

nm can be proved by the orthogonality conditions as
N(I)

K N(J)
K = δIJ and n(i)

k n( j)
k = δ

i j (δIJ and δi j are the Kronechker delta). Using these definitions, we can derive a
relation from Eq.(10.31) as(

ṅ
)
=

(
Ṙ

) (
N

)
+

(
R

) (
Ṅ

)
=

(
ωR

)(
R

)(
N

)
+

(
R

)(
ΩL

)(
N

)
=

(
ωE

)(
n
)
=

(
ωE

)(
R

)(
N

)
.

Then, multiplying
(

N
)t(

R
)t

from the right, we obtain a relation between these three rates as(
ωE

)
=

(
ωR

)
+

(
R

)(
ΩL

)(
R

)t
, ωE

i j = ω
R
i j + RiM R jN Ω

L
MN . (10.55a, b)

On the other hand, as a counterpart of the deformation rate in Eq.(10.52), we here introduce a rotational
component of the velocity gradient. Such a rate in the current configuration can be defined by the component4 of
the ordinary rotation vector ω of

ω ≡ 1
2
∂ × u → ωi ≡

1
2

ei jk ∂ j vk =
1
2

ei jk vk, j = −ei jk
1
2

(
v j,k − vk, j

)
,

where no sum is carried out on underlined indices. Namely, we can define a new rate called the spin w by

wi j ≡
1
2

(
li j − l ji

)
=

1
2

(
vi, j − v j,i

)
,

(
w

)
=

1
2

{(
l
)
−

(
l
)t} → ωi = −

1
2

ei jk w jk. (10.56a, b, c)

Hence comes
li j = di j + wi j, l = d + w,

(
l
)
=

(
d
)
+

(
w

)
, (10.57a, b, c)

showing that the deformation rate d and the spin w are the symmetric and antisymmetric parts of the velocity
gradient l respectively. Relations between these rotational rates will be given later on.

4 Also known as the angular velocity or the vorticity.
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(3) Rate of Change of Volume

A time derivative of Eq.(10.13) yields the rate of change of the volumetric deformation as

J̇ =
∂
(

1/6 ei jk eIJK FiI F jJ FkK

)
∂t

=
1
6

ei jk eIJK

(
ḞiI F jJ FkK + FiI Ḟ jJ FkK + FiI F jJ ḞkK

)
=

1
6

(
ei jk eIJK vi,m FmI F jJ FkK + · · ·

)
=

1
6

(
vi,m ei jk em jk J + · · ·

)
=

1
6

(
vi,m 2δim J + · · ·)

=
1
6

(
2vi,i J + 2vi,i J + 2vi,i J

)
= J vi,i,

from which, we have

J̇ = J dkk →
(

dv
dV

)
˙
=

dv
dV

dkk. (10.58)

Also, substituting Eq.(10.58) after taking a time derivative of the conservation law of mass in Eq.(10.14), we obtain
a relation about the change of the mass density as

ρ̇0 = 0 = ρ̇ J + ρ J̇ = ρ̇ J + ρ dkk J → ρ̇ + ρ dkk = 0 (10.59)

which is an alternative expression of the conservation law of mass. Incidentally, the incompressibility of materials
such as the perfect fluid can be expressed by the condition

J̇ = 0 → dkk = 0 (10.60)

which is called the equation of continuity in the fluid mechanics.

(4) Acceleration and Material Derivative

We here discuss about the inertia term in the Eulerian description. The acceleration a(x, t) is a rate of change of
the velocity expressed by

a(x, t) ≡ u̇(x, t) = ai(x, t) gi. (10.61)

However, the acceleration in the equation of motion is a physical entity called the inertia of a ‘material point’ X;
i.e. it must be a function of X. Since the current position x is a function of the corresponding material point X, the
argument in Eq.(10.61) must be interpreted as x(X, t). Therefore, the chain rule leads to the following expression
of the acceleration:

ai(x, t) = v̇i(x, t) = v̇i (x(X, t), t) =
∂vi(x, t)
∂t

+
∂vi(x, t)
∂x j

∂x j

∂t
=
∂vi(x, t)
∂t

+ vi, j(x, t) v j(x, t). (10.62)

In this particular case, the super-dot represents the rate of change of quantities of a particular material point, and
the operation

Dvi

Dt
=
Dvi

Dt
= v̇i ≡

∂vi

∂t
+ v j

∂vi

∂x j
(10.63)

is called the material differential, while the rate is called the material derivative. The second term can be seen
in the Navier-Stokes equation in the fluid mechanics, and is called the advection term. On the contrary, in the
Lagrangian description, the acceleration A(X, t) can be simply given by a time derivative of the velocity as

A(X, t) ≡ ∂2x(X, t)
∂t2 =

∂V(X, t)
∂t

= V̇(X, t). (10.64)

For example, a centripetal force in the Eulerian description is derived from this advection term as has been shown
in Eq.(2.164a), while it emerges from the rate of change of the base vectors in the Lagrangian description as has
been obtained in Eq.(8.14).



10.2. STRAINS AND STRAIN RATES 447

(5) Examples of Rates

Orthogonal extension: Let us evaluate rates of change in the simple example of Fig. 10.2. Time derivatives of
R in Eq.(10.35a) and n(n) in Eq.(10.37) yield

(
ωR

)
= α̇

 0 −1 0
1 0 0
0 0 0

 , (
ωE

)
= α̇

 0 −1 0
1 0 0
0 0 0


which are equivalent to each other. Then, substituting these into Eq.(10.55), we haveΩL = 0 which is also obtained
from a fact that N(N) in Eq.(10.36) is constant. Since this example models a rigid rotation by α of a cloth made of
orthogonal fibers stretched into their longitudinal directions, the cloth does not ‘feel’ any rotational deformation.
Therefore, the spin ΩL observed on the rotating body itself becomes zero, while ωR and ωE above represent the
rotation rates in the spatially fixed coordinate system.

Corresponding velocity gradient can be calculated by a time derivative of the deformation gradient F in
Eq.(10.34) as

(
l
)
=



Λ̇1

Λ1
cos2 α +

Λ̇2

Λ2
sin2 α −α̇ + Λ̇1

Λ1
sinα cosα − Λ̇2

Λ2
sinα cosα 0

α̇ +
Λ̇1

Λ1
sinα cosα − Λ̇2

Λ2
sinα cosα

Λ̇1

Λ1
sin2 α +

Λ̇2

Λ2
cos2 α 0

0 0
Λ̇3

Λ3


.

Substitution of this equation into Eq.(10.52) results in the deformation rate as

(
d
)
=



Λ̇1

Λ1
cos2 α +

Λ̇2

Λ2
sin2 α

Λ̇1

Λ1
sinα cosα − Λ̇2

Λ2
sinα cosα 0

Λ̇1

Λ1
sinα cosα − Λ̇2

Λ2
sinα cosα

Λ̇1

Λ1
sin2 α +

Λ̇2

Λ2
cos2 α 0

0 0
Λ̇3

Λ3


.

Or it can be rewritten as

(
d
)
=

 cosα − sinα 0
sinα cosα 0

0 0 1




Λ̇1

Λ1
0 0

0
Λ̇2

Λ2
0

0 0
Λ̇3

Λ3


 cosα sinα 0
− sinα cosα 0

0 0 1

 = (
n
)[

(lnΛ)˙
](

n
)t

which is an Eulerian (or rather updated-Lagrangian) rate defined as the logarithmic strain rate below. Namely,
the body is being stretched simply by the rate of the logarithmic strain rate to the directions of the Eulerian
principal deformation which are the Lagrangian directions along the two sides of the rotated rectangle in Fig. 10.2.
Moreover, from Eq.(10.56), the spin is evaluated by

(
w

)
= α̇

 0 −1 0
1 0 0
0 0 0


which coincides with ωR and ωE in this case.

Irrotational case: The next example in Fig. 10.3 shows a case of irrotational behavior, and thus

ωR = 0, ωE = 0, ΩL = 0.

From Eqs.(10.34) and (10.52), the velocity gradient and the deformation rate are obtained, and they are identical
as

(
l
)
=

(
d
)
=



ȧ
a
− γ̇ tan 2γ

γ̇

cos 2γ
0

γ̇

cos 2γ
ȧ
a
− γ̇ tan 2γ 0

0 0
Λ̇3

Λ3


.
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It is true that this expression seems to be very complicated because γ̇ appears in the diagonal components, but,
using the principal stretches and their directions in Eqs.(10.40) and (10.41), we can rewrite it into

(
d
)
=



1
√

2

1
√

2
0

1
√

2
− 1
√

2
0

0 0 1





Λ̇1

Λ1
0 0

0
Λ̇2

Λ2
0

0 0
Λ̇3

Λ3





1
√

2

1
√

2
0

1
√

2
− 1
√

2
0

0 0 1


=

(
n
)[

(lnΛ)˙
](

n
)t
.

Again, it becomes clear that the deformation rate corresponds to the logarithmic strain rate.

General case: Lastly, let us examine a more general case where

(
R

)
=

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (
N

)
=

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 , [
Λ

]
=

 Λ1 0 0
0 Λ2 0
0 0 Λ3

 ,
because the two examples above are special cases with no distortional spin; i.e. ΩL = 0. This setting includes a
change of the principal direction γ. For simplicity, all the components relating to the x3-direction are neglected
hereafter. Then we have(

U
)
=

(
Λ1 cos2 γ + Λ2 sin2 γ (Λ1 − Λ2) sin γ cos γ
(Λ1 − Λ2) sin γ cos γ Λ1 sin2 γ + Λ2 cos2 γ

)
,

(
n
)
=

(
cos(γ + α) − sin(γ + α)
sin(γ + α) cos(γ + α)

)
,

and the spins are obtained as(
ωR

)
= α̇

(
0 −1
1 0

)
,

(
ωE

)
= (γ̇ + α̇)

(
0 −1
1 0

)
,

(
ΩL

)
= γ̇

(
0 −1
1 0

)
.

The change of the direction of deformation ‘felt’ by the materials is expressed by ΩL, while the rate of the rigid-
body rotation is represented by ωR. From these, we have(

F
)
=

(
Λ1 cos γ cos(γ + α) + Λ2 sin γ sin(γ + α) Λ1 sin γ cos(γ + α) − Λ2 cos γ sin(γ + α)
Λ1 cos γ sin(γ + α) − Λ2 sin γ cos(γ + α) Λ1 sin γ sin(γ + α) + Λ2 cos γ cos(γ + α)

)
,

and its time derivative leads to

(
d
)
=

(
n
)[

(lnΛ)˙
](

n
)t − γ̇ (

Λ2
1 − Λ2

2

)
2Λ1Λ2

(
sin 2(γ + α) − cos 2(γ + α)
− cos 2(γ + α) − sin 2(γ + α)

)

=
(

n
)[

(lnΛ)˙
](

n
)t − γ̇ (

Λ2
1 − Λ2

2

)
2Λ1Λ2

(
n
) ( 0 1

1 0

) (
n
)t

(
w

)
=

(
ωR

)
− (Λ1 − Λ2)2

2Λ1Λ2

(
ΩL

)
.

The second terms depend on γ̇ and emerge from existence of large shearing deformation (Λ1 − Λ2). In the second
term of the deformation rate, the diagonal element as well as the trace vanish so that it is an equivolumetric
component or a shearing part due to (Λ1 − Λ2). On the other hand, as far as the magnitude of deformation is
so small that approximations such as Λ1 → 1 + ϵ1 and Λ2 → 1 + ϵ2 hold, the second term of the spin can be
approximated as

(Λ1 − Λ2)2

2Λ1Λ2
→ (ϵ1 − ϵ2)2

2
,

showing that the second term becomes negligible in comparison with the first term: i.e. w ≃ ωR

(6) What is Deformation Rate?

Using the matrix forms with the help of the spectral expressions, we shall evaluate two components of the defor-
mation rate. A time derivative of Eq.(10.17) results in(

Ḟ
)
=

(
Ṙ

)(
U

)
+

(
R

)(
U̇

)
=

(
ωR

)(
F

)
+

(
R

)(
U̇

)
.
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Substituting this relation into Eq.(10.51) and considering Eq.(10.17), we can rewrite it to obtain(
l
)
=

(
ωR

)
+

(
R

)(
U̇

)(
U

)−1(
R

)t
. (∗)

On the other hand, since the spectral expression of U in Eq.(10.22b) yields a relation as(
U̇

)(
U

)−1
=

((
ΩL

)(
N

)[
Λ

](
N

)t
+

(
N

)[
Λ̇

](
N

)t
+

(
N

)[
Λ

](
N

)t(
ΩL

)t) (
N

) [ 1
Λ

] (
N

)t
=

(
ΩL

)
+

(
N

) [ Λ̇
Λ

] (
N

)t
+

(
U

)(
ΩL

)t(
U

)−1
,

substituting it into Eq.(∗) above and considering Eqs.(10.17) and (10.31), we obtain(
l
)
=

(
ωR

)
+

(
R

)(
ΩL

)(
R

)t
+

(
n
) [ Λ̇
Λ

] (
n
)t − (

F
)(
ΩL

)(
F

)−1
.

Eventually, substitution of this equation into Eq.(10.52) leads to an expression of the deformation rate as(
d
)
=

(
dL

)
+

(
dEV

)
, d = dL + dEV , (10.65a, b)

where the first term dL is defined by(
dL

)
≡

(
n
) [ Λ̇
Λ

] (
n
)t
=

(
n
)

[ (lnΛ)˙]
(

n
)t
, (10.66)

and is called the logarithmic strain rate dL. The second term dEV is defined by(
dEV

)
≡ −1

2

[(
F

)(
ΩL

)(
F

)−1
+

((
F

)(
ΩL

)(
F

)−1
)t]

. (10.67)

Using the Eulerian description in Eqs.(10.25) and (10.55), we can express it by a symmetric tensor as(
dEV

)
≡ −1

2

[(
v
) ((

ωE
)
−

(
ωR

)) (
v
)−1
+

((
v
) ((

ωE
)
−

(
ωR

)) (
v
)−1

)t]
(10.68)

which is the shearing deformation rate due to the rotation of the principal stretching directions illustrated in the
examples above.

Incidentally, taking a trace of Eq.(10.65) and considering the volumetric change in Eq.(10.58), we have

tr
(

left-hand side
)
= dkk =

J̇
J
, tr

(
1st term of right-hand side

)
= tr

(
dL

)
=
Λ̇1

Λ1
+
Λ̇2

Λ2
+
Λ̇3

Λ3
=

(Λ1 Λ2Λ3)˙
Λ1 Λ2Λ3

=
J̇
J
,

and, therefore, the trace of the second term becomes zero:

tr
(

2nd term of right-hand side
)
= tr

(
dEV

)
= 0.

Namely, the logarithmic strain rate dL is the rate of irrotational deformation component (rate of volumetric
change), and the second term dEV is the rate of equivolumetric deformation component (rate of shear deforma-
tion). However, it should be noted that the logarithmic strain rate is not the rate of change of the logarithmic strain
EL; i.e. a time derivative of Eq.(10.46) can show that(

ĖL
)
=

(
ΩL

)(
EL

)
+

(
N

)[
(lnΛ)˙

](
N

)t
+

(
EL

)(
ΩL

)t
,

(
dL

)
. (10.69)

Similarly, substituting Eq.(∗) into Eq.(10.56), we can express the spin by(
w

)
=

(
ωR

)
+

{(
R

)(
ΩL

)(
R

)t − 1
2

[(
F

)(
ΩL

)(
F

)−1
+

((
F

)−1
)t (
ΩL

)(
F

)t]}
. (10.70)

The term in the brace corresponds to the component of the spin relating to the shearing deformation due to the
rotation of the principal direction, ΩL. When Eq.(10.55) is used, the first two terms can be replaced by ωE leading
to an alternative expression as(

w
)
=

(
ωE

)
− 1

2

[(
F

)(
ΩL

)(
F

)−1 −
((

F
)(
ΩL

)(
F

)−1
)t]

, (10.71)

or, the manipulation used above in deriving Eq.(10.68) results in another antisymmetric tensor expression as(
w

)
=

(
ωE

)
− 1

2

[(
v
) ((

ωE
)
−

(
ωR

)) (
v
)−1 −

((
v
) ((

ωE
)
−

(
ωR

)) (
v
)−1

)t]
. (10.72)

However, since the major component of the spin is ωR when the magnitude of the deformation is small enough as
has been explained in the preceding section, Eq.(10.70) using ωR is preferable to Eq.(10.71) using ωE .
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10.2.3 Elastic and Plastic Strain Rates
(1) Additive and Multiplicative Decompositions

When two different mechanisms such as elastic deformation and plastic deformation occur, the total deformation
is often expressed by a product of the corresponding deformation gradients as

F = Fe Fp,

where the superscripts ‘e’ and ‘p’ indicate the elastic and plastic parts respectively. Namely, after undergoing some
plastic deformation in a certain virtual intermediate configuration, the body experiences the elastic deformation in
order to get rid of the incompatibility due to the plastic strain. This kind of manipulation is called the multiplicative
decomposition.5 But, it is simply an example of the chain rule of the partial derivatives. Furthermore, from
a physical point of view, it is rather straightforward to express the total position vectors time by time in their
consecutive order such as

x(0) ≡ X(t = 0), x(n) ≡ x(t), F = Fe
m Fp

j · · · Fe
4 Fp

3 Fe
2 Fe

1,

x(0)(t = 0)
elastic−→ x(1)(t = ∆t)

elastic−→ · · · x(k)(t = k∆t)
plastic
−→ x(k+1)(t = (k + 1)∆t)

elastic−→ · · ·

· · · x(n−1) (t = (n − 1)∆t)
plastic
−→ x(n)(t = n∆t)

elastic−→ ξ(t + ∆t),

especially because the plastic flow rule cannot be integrable. Therefore, the corresponding deformation gradient
must be expressed by the chain rule as

∂ξα
∂XN

=
∂ξα
∂xm

∂xm

∂XN
,

∂xm

∂XN
=

1∏′

k=n

∂x(k)
ik

∂x(k−1)
jk

, in = m, j1 = N, jk = ik−1,

where a prime in
∏′ indicates that the k-th multiplication must be carried out in the descending order from n to 1.

On the contrary, it should be noted that, in practice, the body undergoes some elastic and plastic deformations
not consecutively but simultaneously. Since the position vector at time t = t + ∆t can be expressed by

ξ = ξ(x, t + ∆t) = ξ (x(X, t), t + ∆t) ,

the deformation gradient can be evaluated as

∂ξα
∂XJ

=
∂ξα
∂xk

∂xk

∂XJ
, ξα,J = ξα,k xk,J .

Considering that the flow rule is defined by the increments, we take a rate of change of this deformation gradient
in the current configuration at t = t + ∆t to obtain

ξ̇α,J = ξ̇α,β ξβ,k xk,J + ξα,l ẋl,k xk,J ,

from which the velocity gradient lαη(t + ∆t) can be evaluated as follows;

lαη ≡ ξ̇α,J XJ,η = ξ̇α,β ξβ,k xk,J XJ,η + ξα,l ẋl,k xk,J XJ,η = ξ̇α,η + ξα,k ẋk,l ξ
−1
η,l .

All the indices are denoted by the lower-case letters because the quantities are evaluated in the current consecutive
configurations at time t = t and t = t + ∆t. While the term ẋk,l in the second term is defined in the configuration at
t = t, the first term and thus the left-hand side are evaluated at the current configuration at t = t + ∆t. Therefore,
the second term needs the corresponding transformation tensors of ξα,k and ξ−1

η,l . As far as the ordinary plasticity is
concerned, since the increment ∆t must be small enough, these transformation terms of ξα,k and ξ−1

η,l may be approx-
imated by the Kronecker delta; i.e. ξα,k ≃ δαk, and ξ−1

η,l ≃ δηl. Therefore, the equation above can be approximated
by

lαη ≃ ξ̇α,η + ẋα,η.

This relation is called the additive decomposition as a counterpart of the multiplicative decomposition, but is here
supposed to be an approximation [99].

5 Asaro [2] used this decomposition in order to explain some kinds of concepts of elastoplastic deformation of crystalline metals. However,
the additive decomposition was actually employed.
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Fig. 10.6 Plasticity and elasticity

Or, when the second term in the above equation is treated as a deforma-
tion defined in the configuration at t = t + ∆t by

ẋM
α,η ≡ ξα,k ẋk,l ξ

−1
η,l → lαη = ξ̇α,η + ẋM

α,η,

it is straightforward to consider that the additive decomposition holds exactly
as have been employed in many references; e.g. [2, 58], because both terms
are defined in the same configuration. In actual element tests, both the elastic
strain and the plastic strain occur at the same time at one step of the increment of loadings. It suggests that the
terms ξ̇α,η and ẋM

α,η above are observed and measured. For example, when an edge dislocation reaches the surface
of the specimen in Fig. 10.6 as ξ̇α,η, a kinematical incompatibility along the loading axis is about to develop.
But, at the same time, an elastic spin and deformation with a plastic spin as expressed by ẋM

α,η emerge in order to
compensate the incompatibility, so that the final compatible state at that increment can be obtained as is shown in
the rightmost figure. Therefore, even in finite deformations, the deformation rate and spin can be exactly evaluated
by the addition of the elastic and plastic parts for the elastoplastic models as

d(x) = de(x) + dp(x), w(x) = we(x) + wp(x). (10.73a, b)

However, it should be noted that, in finite deformation, any kinds of strain measures ϵ cannot be added to evaluate
the total strain as

ϵ(x) =×ϵe(x) + ϵp(x), ϵ(X) =×ϵe(X) + ϵp(X), (10.74a, b)

because the plastic incremental strain cannot be integrable explained in Secs. 9.2.3 and 9.3.3. In the numerical
simulations, no total strain need to be calculated, but position vectors are updated simply by the incremental
displacement u.

(2) Exaggerated Example

As an example for comparison, let us consider the thermal expansion problem in Sec. 2.4.4. Suppose that a
spherical (cylindrical) region with its radius a0 in an infinite body is subjected to a change of temperature from 0◦C
to T ◦C. Then, the radius becomes a, while the interfacial pressure on the sphere becomes p. Cut the sphere out of
the body virtually, and, if the radius finally reaches as

T , the corresponding deformation gradient becomes

F s
T ≡

as
T

a0
= 1 + α T,

where α is a linear coefficient of thermal expansion. Next, applying a pressure p on the surface in order to make
the radius a, we obtain the corresponding deformation gradient as

F s
p ≡

a
as

T
= 1 +

p
K̄ s
,

where K̄ s is an apparent stiffness against the pressure p. Therefore, the multiplicative law yields the total deforma-
tion gradient as

F s ≡ a
a0
= F s

p × F s
T =

(
1 +

p
K̄ s

)
(1 + α T ) .

On the other hand, the infinite body subjected to the pressure p on its surface of the spherical hole has the defor-
mation gradient as

F ≡ a
a0
= 1 +

p
K̄
,

where K̄ is another apparent stiffness of the infinite body. Eventually, in order to put the squeezed sphere into the
deformed infinite body, we must have

F = F s.

Substituting three equations above into this equation, we can calculate the pressure by
p
K̄
=

α T

1 − K̄
K̄ s

(1 + α T )
,

from which the final radius is obtained as
a
a0
=

1 + α T

1 − K̄
K̄ s − K̄

α T
. (10.75)
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Fig. 10.7 Multiplicative and additive laws

On the contrary, if the thermal expansion develops to-
gether with the elastic deformation step by step, the additive
law can be applied to the incremental representation of the the-
ory. Namely, an inelastic strain rate ės

T due to an incremental
temperature Ṫ can be evaluated by

ės
T = α Ṫ ,

while an elastic strain rate ės
p by an incremental pressure ṗ can

be calculated by

ės
p =

ṗ
K̄ s
. (∗)

Therefore, the additive law yields the total strain rate ės as

ės ≡ ȧ
a
= ės

T + ės
p = α Ṫ +

ṗ
K̄ s
.

On the other hand, the strain rate ė of the surrounding body
due to the change of the pressure is an elastic component, and
is given by

ė ≡ ȧ
a
=

ṗ
K̄
.

Therefore, the consistency of the deformation holds only when

ė = ės,

from which we have

ṗ =
K̄ K̄ s

K̄ s − K̄
α Ṫ .

Using these equations, we can express the change of the radius in terms of the temperature change by

ȧ
a
=

K̄ s

K̄ s − K̄
α Ṫ .

Integrating this equation, we finally obtain the radius of the sphere as

a
a0
= exp

(
K̄ s

K̄ s − K̄
α T

)
. (10.76)

By the Taylor expansion, of course, both the Eqs.(10.75) and (10.76) have the same first order term as

a
a0
≃ 1 +

K̄ s

K̄ s − K̄
αT.

Fig. 10.7 shows results when Eq.(2.221) holds in plane strain state. Since the order of the linear coefficient of
thermal expansion α is about 10−5, the abscissa remains α T ∼ 0.1 even when T becomes as large as 10,000◦C.
Furthermore, in finite deformation with large change of temperature, mechanical parameters cannot remain con-
stant, and any models of thermal expansion cannot be linear. So that, as long as realistic engineering situations
are concerned, the two decompositions cause no significant difference between their results. In comparison of two
different models, it is often useful to examine some kinds of limiting states; e.g. T → +∞ in this example. In such a
case, the additive decomposition predicts an infinite radius which cannot be accepted from a physical point of view.

Even when some objective stress rates discussed later on are used, Eq.(∗) above is replaced by ės
p =

ṗ(
K̄ s − ζp

) as

an approximation, and Eq.(10.76) can be rewritten as

α T = ln
a
a0
+

1
ζ

ln
[
1 − ζ K̄

K̄ s
ln

a
a0

]
,

but the discrepancies between results due to the existence of the term σi j dkk are very small, where ζ = 1 when the
Jaumann rate of the Kirchhoff stress is used; ζ = −2/3 for the Oldroyd stress rate; ζ = 1/3 for the Truesdell stress
rate. On the other hand, the prediction by the multiplicative decomposition is bounded as

a
a0
→ K̄ − K̄ s

K̄
< ∞,

although the corresponding values are not so realistic like
a
a0
→ 4, and p→ 3µ when ν = 1/3.
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10.3 Stresses, Equilibrium and Stress Rates

10.3.1 Basic Stresses and Equilibrium
(1) Cauchy Stress and Nominal Stress

In the preceding section, many kinds of measures of deformation are introduced. Similarly, there can be defined
many stresses. For example, since the body subjected to many kinds of actions is in equilibrium in the current
configuration, it seems to be straightforward to define a stress by the Eulerian description. However, it may
be preferable to use the Lagrangian description because the resistance of the body becomes history-dependent
especially in the elastoplastic state. In this section, we first introduce two typical stresses by these two descriptions.

g1

g2

g2

g1

dA M

m d f

d f

da

S N
21

σ21

t = t

t = 0

t = 0

t = t

Fig. 10.8 Definitions of stresses

The stress is a mathematical model of the resistance of deformable bodies,
and thus it emerges after deformation. Therefore, the stress can be defined in
the current configuration. To this end, consider a virtual differential area el-
ement da in the spatially fixed coordinate system of the current configuration
t = t as is shown in the upper figure of Fig. 10.8. Then, the stress is defined by
the same manner as that of Eq.(2.19) and Fig. 2.9 in the infinitesimal deforma-
tion theory, and is an Eulerian description of the resistance. Let d f denote the
resistance vector on the area element da, and the traction vector t is defined by

t = ti gi =
d f
da
. (10.77)

Then, using the unit normal vector m of the surface, we can define the Cauchy
stress (true stress) σ(x) by

t = m ·σ, ti = m j σ ji → d fi = m j σ ji(x) da. (10.78)

On the other hand, a stress component in the standard tensile tests is measured with respect to the initial
sectional area of the specimens. One of such stresses by the Lagrangian description is depicted in the lower figure
of Fig. 10.8, where the traction d f is supposed to act on the current surface which has been a differential area dA
in the initial configuration. The traction d f is a resistant force at the material point where the Cauchy stress above
is defined, but the corresponding area element is chosen in the initial configuration. Therefore, a counterpart of the
definition in Eq.(10.78) can be given by

d fi = MJ S N
Ji (X) dA, (10.79)

where M is the unit normal vector of the surface dA in the initial configuration, and SN(X) is called the nominal
stress.6

The differential area elements dA and da in the initial and current configurations can be defined by

dA ≡ dX × ∆X = eIJK dXJ ∆XK gI = dA MI gI , da ≡ dx × ∆x = ei jk dx j ∆xk gi = da mi gi (10.80a, b)

respectively, where eIJK and ei jk are the permutation symbol given by Eq.(D.15). Using the deformation gradient,
we can rewrite the latter as

da mi gi = ei jk x j,J xk,K dXJ ∆XK gi = ei jk x j,J xk,K dXJ ∆XK
(
δim gm

)
= ei jk x j,J xk,K dXJ ∆XK

(
xi,L XL,m

)
gm,

where the term in the parenthesis of the last equation is a replacement of the Kronecker delta δim. Then, using the
Jacobian in Eq.(10.13) and considering Eq.(10.80a), we arrive at

da mi gi =
(
ei jk xi,L x j,J xk,K

)
XL,m dXJ ∆XK gm = eLJK J XL,m dXJ ∆XK gm

= J XL,m (eLJK dXJ ∆XK) gm = J XL,m (dA ML) gm = J XL,i dA ML gi.

Hence come two relations between these differential area elements as

mi da = J XL,i ML dA, MI dA =
1
J

xk,I mk da. (10.81a, b)

6 In many references; e.g. [48], this nominal stress is called the 1st Piola-Kirchhoff stress. However, the term ‘nominal stress’ is chosen
here according to the historical description in the reference [59] where the nominal stress is first defined by Hill [28] while the 1st
Piola-Kirchhoff stress is first seen in the references [81, 82].
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After substituting Eq(10.81) into Eq.(10.78), equating it to Eq.(10.79), we can write

d fi = m j σ ji da = J XL, j ML dAσ ji = ML

(
J XL, j σ ji

)
dA = ML S N

Li dA,

from which relations between the two stress tensors are obtained as

S N
I j = J XI,i σi j, σi j =

1
J

xi,I S N
I j , SN = J F−1 σ, σ =

1
J

F SN , (10.82a, b, c, d)

or S N
I j =

ρ0

ρ
XI,i σi j, σi j =

ρ

ρ0
xi,I S N

I j . (10.82e, f)

By the direct notation of tensors, we often express these stress tensors as

σ = σi j gi ⊗ g j, SN = S N
I j GI ⊗ g j. (10.83a, b)

The first base vector corresponds to the normal vector of the differential area element, while the second base vector
represents the directions of the stress tensor components.

(2) Equilibrium Equations and Boundary Conditions

In terms of the Cauchy stress, the equilibrium equation (equation of motion) is the same as Eq.(2.22) in the
infinitesimal deformation theory; i.e.

∇x ·σ + ρπ = ρ u̇, σ ji, j + ρ πi = ρ v̇i, (10.84a, b)

where π(x) denotes the distributed force per a unit mass in the current configuration, and the acceleration u̇(x) must
be defined by Eq.(10.62) including the advection term. The corresponding boundary conditions are then given by

ui = given or m j σ ji = ti (10.85)

where m is a unit normal vector of the boundary surface, and t(x) represents the surface traction per a unit area
in the current configuration. Also, the equilibrium equation of the moment becomes the same as that of the
infinitesimal deformation theory, which is

σi j = σ ji. (10.86)

Therefore, the Cauchy stress is a symmetric tensor.
The conservation law of linear momentum is usually stated as

d(Kinetic Energy)
dt

+
d(Internal Energy)

dt
= (Rate of Work by Applied Force) + (Rate of Input Heat).

Then, letting e denote the internal energy per unit mass in the current configuration, the equation above can be
written as

d
dt

{∫
v

(
1
2
ρ u · u + ρ e

)
dv

}
=

∫
v

ρπ · u dv +
∫

s
t · u ds +

∫
v

ρ ḣ dv −
∫

s
m · q̇ ds, (10.87)

where h(x) is the distributed heat source per unit mass, and q(x) is the heat flux through the surface. Neglecting
terms relating to heat, and considering the conservation law of mass (ρv = const.) in Eq.(10.14), we can easily
express the first two terms by the material derivatives to obtain∫

v

ρ {vi v̇i + ė} dv =
∫
v

ρ πi vi dv +
∫

s
ti vi ds.

Substituting the equilibrium Eq.(10.84) into this equation in order to eliminate the distributed force π, and taking
into account the boundary condition of Eq.(10.85) by the Gauss theorem in place of t, we arrive at a simple form
of the equation above as ∫

v

(
σ ji vi, j − ρ ė

)
dv = 0.

Therefore, the internal energy rate per unit mass can be expressed by

ρ ė = σ ji vi, j =
1
2

(
σ ji vi, j + σi j v j,i

)
.
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Eventually, consideration of the equilibrium Eq.(10.86) of moment leads to

ė =
1
ρ
σi j d ji = ẇ, (10.88)

where d is the deformation rate, and the right-hand side is the rate of stress-work ẇ. The similar manipulation is
possible when the heating parts are included, and we have

ė = ẇ + ḣ − 1
ρ

q̇i,i =
1
ρ
σi j d ji + ḣ − 1

ρ
q̇i,i; (10.89)

i.e. the internal energy rate is addition of the rate of stress-work and the rate of work by heat. It should be noted
that Eq(10.88) indicates a conjugateness between the Cauchy stress σ and the deformation rate d suggesting a kind
of choice in constructing constitutive relations later.

On the other hand, by the Lagrangian description, the conservation law corresponding to Eq.(10.87) can be
written as

d
dt

{∫
V

(
1
2
ρ0 V · V + ρ0 e

)
dV

}
=

∫
V
ρ0 π · V dV +

∫
S

T · V dS , (10.90)

where T is the surface traction defined in the initial configuration but is defined by the base vector in the spatially
fixed coordinate system. Although the same symbol π is used to denote the distributed force, it must be treated as a
function of the material point X; i.e. π(X). Also, as is clear from the definition of the nominal stress in Eq.(10.79),
the force boundary condition on the surface the normal vector of which is denoted by M can be expressed by

M ·SN = T, MJ S N
Ji = Ti, (10.91a, b)

similarly to Eq.(10.85). Substituting Eq.(10.91) into Eq.(10.90), and using the Gauss theorem, we have∫
V

Vi

{
ρ0 V̇i − S N

Ji,J − ρ0 πi

}
dV +

∫
V

(
ρ0 ė − S N

Ji Vi,J

)
dV = 0.

Therefore, from the first term in this equation, the Lagrangian equilibrium equation in terms of the nominal
stress can be obtained as

∇X ·SN + ρ0 π = ρ0 V̇, S N
Ji,J + ρ0 πi = ρ0 V̇i, (10.92a, b)

and the rate of stress-work is given by

ẇ =
1
ρ0

S N
I j V j,I =

1
ρ0

S N
I j v j,I . (10.93)

Namely, the nominal stress SN is conjugate with not the deformation rate d but the velocity gradient v j,I . Appar-
ently Eq.(10.92) resembles the equilibrium Eq.(10.84) in terms of the Cauchy stress, but the physical meaning is
completely different because the derivatives in the former equation are taken with respect to the material point X.

Furthermore, substitution of Eq.(10.82) into the moment equilibrium Eq.(10.86) in terms of the Cauchy stress
yields the moment equilibrium in terms of the nominal stress as

xi,I S N
I j = x j,I S N

Ii , (10.94)

revealing that the nominal stress SN is not a symmetric tensor. The same relation can be obtained by the manipu-
lation similar to that in Sec. 2.3.5 as follows; the moment equilibrium of applied forces is given by∫

S
x × T dS +

∫
V

x × ρ0 π dV = 0.

Substitution of Eq.(10.91) into T in the first term results in

0 =
∫

S
ei jk x j ML S N

Lk dS +
∫

V
ei jk x j ρ0 πk dV,

which can be rewritten by the Gauss theorem as

=

∫
V

ei jk
∂

∂XL

(
x j S N

Lk

)
dV +

∫
V

ei jk x j ρ0 πk dV

=

∫
V

ei jk

x j,L S N
Lk + x j

∂S N
Lk

∂XL

 dV +
∫

V
ei jk x j ρ0 πk dV.
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Eventually, substituting the equilibrium Eq.(10.92) except the inertia term, we have

=

∫
V

ei jk

(
x j,L S N

Li

)
dV =

∫
V

(
1
2

ei jk x j,L S N
Li +

1
2

ei jk x j,L S N
Li

)
dV =

∫
V

1
2

ei jk

(
x j,L S N

Li − xi,L S N
L j

)
dV,

the integrand of which is the moment equilibrium Eq.(10.94) above.

10.3.2 Other Stresses and Equilibrium
(1) Kirchhoff Stress

Furthermore, a few typical stresses will be introduced here. The Kirchhoff stress τK(x) can be defined through
the stress-work by

ẇ =
1
ρ
σi j d ji =

1
ρ0
τK

i j d ji. (10.95)

Namely, it is related to the Cauchy stress as
τK

i j(x) ≡ ρ0

ρ
σi j. (10.96)

It should be noted that the current configuration is chosen as its reference. This stress can be interpreted as an
Eulerian version of the second Piola-Kirchhoff stress explained below.

Although the nominal stress is defined to have its components with respect to the base vectors of the spatially
fixed coordinate system, another definition of the Lagrangian stress by the embedded base vectors is possible. To
that end, we first rewrite the stress-work in terms of the Green strain tensor. The definition of the deformation rate
in Eq.(10.52) leads to

ĖIJ = di j FiI F jJ , di j = XI,i XJ, j ĖIJ . (10.97a, b)

Substitution of this relation into the stress-work of Eq.(10.88) results in

ẇ =
1
ρ
σi j d ji =

1
ρ
σi j XI,i XJ, j ĖIJ =

1
ρ0

(
ρ0

ρ
σi j XI,i XJ, j

)
ĖIJ .

Then, if the term in the parentheses of the last equation is replaced by a new stress tensor S(X), the stress-work
above can be written as

ẇ =
1
ρ0

SIJ ĖJI . (10.98)

This new stress S(X) is called the second Piola-Kirchhoff stress, and is defined by

S(X) = SIJ GI ⊗ GJ , SIJ ≡
ρ0

ρ
XI,i XJ, j σi j, σi j =

ρ

ρ0
xi,I x j,J SIJ . (10.99a, b, c)

Eq.(10.98) suggests that the pair of the second Piola-Kirchhoff stress and the Green strain may be appropriate
to employ in constructing a constitutive model. Note that the tensor components SIJ has somewhat ambiguous
meanings from a physical point of view. Moreover, rigorously speaking, the indices of the second Piola-Kirchhoff
stress tensor must be given by the superscripts as has been explained in Sec. D.4 in order to distinguish the covariant
and contravariant components, because, in general, the base vectors GI are no longer orthonormal to each other.

Substituting Eq.(10.82) into Eq.(10.99), we can relate two Lagrangian stresses as

S N
I j = x j,J SIJ , SIJ = S N

I j XJ, j. (10.100a, b)

Comparing this relation with Eq.(10.99), we can further define a new stress TR(X) by

T R
iJ(X) = xi,K SKJ , SKJ = XK,i T R

iJ (10.101a, b)

which is called the first Piola-Kirchhoff stress. Finally, the relations between these stress tensors are given by

σi j =
ρ

ρ0
xi,I x j,J SIJ =

ρ

ρ0
xi,I S N

I j =
ρ

ρ0
xi,I
::

x j,J SIJ
::
=
ρ

ρ0
T R

iJ
::

x j,J . (10.102)

Although the first Piola-Kirchhoff stress tensor looks like a transpose of the nominal stress tensor, these physical
meanings are completely different.
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The equilibrium equation in terms of the second Piola-Kirchhoff stress can be deduced by substitution of
Eq.(10.100) into Eq.(10.92) as (

xi,K SJK
)
,J + ρ0 πi = ρ0 V̇i (10.103)

which represents the equilibrium at each material point similarly to Eq.(10.92); e.g. the distributed force must be
denoted by π(X) explicitly. However, this equilibrium is taken to the directions of the base vectors gi in the spatially
fixed coordinate system. Since the second Piola-Kirchhoff stress components are directed to the embedded base
vectors GK , a kind of transformation of the coordinate systems is needed and is expressed by the deformation
gradient

(
xi,K

)
in this equation.

(2) Physical Meanings of Second Piola-Kirchhoff Stress and Green Strain

In order to explain a physical meaning of the second Piola-Kirchhoff stress, the Bernoulli-Euler beam theory in
finite displacements in Sec. B.2 is here employed. This theory is constructed by the use of the second Piola-
Kirchhoff stress and the Green strain, but the corresponding model shows physically clear characteristics. The
internal virtual work term in Eq.(B.21) is expressed by the pair of Eq.(10.105), but it can be rewritten as∫

V
S11 δE11 dV =

∫
V
σδe dV =

∫
V

(
physical component of S11

)
δ
(
physical component of E11

)
dV,

where the physical component of the second Piola-Kirchhoff stress is defined by Eq.(B.22) as

σ =
√
g S11,

because no cross-sectional deformation is allowed in this beam theory. Also, the physical component of Green’s
strain is defined by the extensional strain in Eq.(B.19) as

e =
√

1 + 2 E11 − 1 =
√
g − 1 = ϵ − x3 κ.

Note that σ is not a Cauchy stress component. Since S11 is the component to the G1-direction, and this base vector
is not unit but |G1| =

√
g, we can express the corresponding vector component S11 G1 by σ above as

S11 G1 = σ
G1

|G1|
.

On the other hand, the length of the base vector G1 after deformation is a stretch of the corresponding base vector
g1 before deformation. Hence, |G1| =

√
g represents the stretch of the differential line elements parallel to the

beam axis. Therefore, e above is a physical component of the Green strain tensor component Exx which is the
same as the component defined by Eq.(10.24a). Moreover, it is also equivalent to a component of the extensional
strain tensor EE in Eq.(10.44a). Taking into account the conjugateness with respect to the stress-work, we may
define an elastic constitutive law by

σ = E e,
(
physical component of S11

)
=

(
material parameter

) × (
physical component of E11

)
to model the beam theory which becomes quite beautiful from a physical point of view.

Furthermore, the equilibrium Eq.(B.27) can be written as

d
dX

[(
cos θ(X) sin θ(X)
− sin θ(X) cos θ(X)

) {
N(X)
V(X)

}]
+

{
p(X)
q(X)

}
=

{
0
0

}
,

where the axial force N is an internal force to the direction of the beam axis rotated by θ due to bending, and
the shear force V is a force component normal to N. Namely, these internal forces are the components to the
GK-directions, while the applied forces p and q are oriented to the gi-directions of the spatially fixed coordinate
system. Therefore, the coordinate transformation matrix using the slope θ of the beam axis is necessary in the
equilibrium equation above, and it corresponds to the term

(
xi,K

)
in Eq.(10.103). As has been explained above, the

derivative is taken with respect to the material point X, and the applied forces p and q are functions of the material
point X.
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(3) Biot Stress

Since the extensional strain EE appears in the preceding section dealing with the beam theory, we here introduce
another stress tensor [59] conjugate with EE defined by Eq.(10.44a). Incidentally, the extensional strain is often
called the Biot strain. From Eqs.(10.9), (10.18) and (10.44a), we have a relation as

ĖIJ =
1
2

(
U̇KI UKJ + UKI U̇KJ

)
.

Substituting this equation into Eq.(10.98), and considering that ĖE
= U̇ from Eq.(10.44a), we can define a sym-

metric stress tensor through the conjugateness of the stress-work with ĖE as

ẇ =
1
ρ0

SIJ ĖJI =
1
ρ0

{
1
2

(SJK UKI + UJK SKI)
}

ĖE
JI ,

because both S and U are symmetric tensors. The term in the braces of the last equation defines such a new stress
T(X) by

T ≡ 1
2

(S U + U S) , TIJ ≡
1
2

(SIK UKJ + UIK SKJ) (10.104a, b)

which is called the Biot stress. We here summarize the pairs in the stress-work as

ẇ =
1
ρ
σi j d ji =

1
ρ0
τK

i j d ji =
1
ρ0

S N
I j v j,I =

1
ρ0

SIJ ĖJI =
1
ρ0

TIJ ĖE
JI . (10.105)

The term ‘conjugateness’ has been used to represent the characteristics of these pars.
By the way, another definition of a non-symmetric stress tensor corresponding to the Biot stress can be possible,

and it is
T nonsymIJ ≡ UIK SKJ (10.106)

through the similar manipulation. Substituting this definition into Eq.(10.100), and considering the polar decom-
position theorem, we can derive a relation between this stress and the nominal stress as

S N
I j = TnonsymIK R jK .

Since the nominal stress SN has components in the spatially fixed coordinate system, the Biot stress can be inter-
preted as a stress having components parallel to the embedded base vectors in the current configuration per unit
area in the initial configuration.

10.3.3 Physical Meaning of Stresses

(1) Differences between Stresses

We here compare physical meanings of the stresses defined in the preceding sections by the use of Fig. 10.9.

Cauchy stress (true stress) σ = σi j gi ⊗ g j: It corresponds to the internal traction vector R̃ on an area in the
current configuration, and its components are in the directions of the base vectors of the spatially fixed
coordinate system per the unit area which is not necessarily unit in the initial configuration. It may be the
most comprehensible stress but is not easily measured directly in experiments.

first Piola-Kirchhoff stress TR = T R
iJ gi ⊗ GJ: It is similar to the Cauchy stress, but its components have magni-

tudes
ρ0

ρ
times those of the Cauchy stress. Also they are in the directions of the base vectors of the embedded

coordinate system; e.g. T R
11 is not necessarily normal to T R

12.

nominal stress SN = S N
I j GI ⊗ g j: It corresponds to the internal traction vector R in the current configuration on

an area which has been unit in the initial configuration. The components are in the directions of the base
vectors of the spatially fixed coordinate system. The area in the current configuration is not necessarily unit.
It may be the most important stress in the updated Lagrangian description.
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Fig. 10.9 Typical stress tensors: Cauchy stress, nominal stress and two kinds of Piola-Kirchhoff stresses

second Piola-Kirchhoff stress S = SIJ GI ⊗GJ: It corresponds to the internal traction vector R in the current con-
figuration on an area which has been unit in the initial configuration. The components are in the directions of
the base vectors of the embedded coordinate system. The area in the current configuration is not necessarily
unit, and S11 is not always normal to S12. It may be a comprehensible stress similarly to the Cauchy stress,
but its components do not always have physically clear meanings. Therefore, careful consideration is usually
needed to use it in the constitutive models. It may be also the most important stress in the Lagrangian and
updated Lagrangian descriptions.

Biot stress T ≃ TIJ GI ⊗ GJ ,GJ ≡
GJ∣∣∣GJ

∣∣∣ (no sum on J): It corresponds to the internal traction vector R in the

current configuration on an area which has been unit in the initial configuration. The components are in the
directions of the ‘normalized’ base vectors of the embedded coordinate system.

(2) Example

As a simple example, consider a deformed state in Fig. 10.2; i.e. Fig. 10.10, where the body rotates by α in the
x1-x2 plane and is stretched by Λi (i = 1, 2, 3) in three directions of the embedded base vectors. Only one internal

traction R exists in the
G1

|G1|
-direction. Note that this is a quite special case where normality of the components

holds for all the stress tensors compared here. Just like the standard tensile tests of steel specimens, the traction R in
this figure is defined by an internal force in the current configuration per unit area in the initial configuration.
Because of this definition of R, it is easy to calculate the second Piola-Kirchhoff stress. However, its component is
in the G1-direction, so that we have

R = R
G1

|G1|
= S11 G1 → S11 =

R
|G1|

.

Since the norm of G1 is not unity but equivalent to the stretch: i.e. Λ1 = |G1|, the equation above results in

S11(X) =
R
Λ1

, other SIJ = 0. (10.107a, b)

Hence, R can be interpreted as a physical component of the second Piola-Kirchhoff stress S11 and has the dimension
of pressure. Next, the Biot stress can be calculated from Eq.(10.104) as

T11 = R, other TIJ = 0,

implying that it is one of the physically meaningful Lagrangian stresses. On the other hand, the nominal stress
corresponds to the components of the same traction in the directions of the base vectors gi of the spatially fixed
coordinate system, so that we can evaluate them as

S N
11(X) = R cosα, S N

12(X) = R sinα, S N
21(X) = 0, S N

22(X) = 0. (10.108a, b, c, d)

Since the Cauchy stress is evaluated per unit area in the current configuration, the equilibrium equations in the
second figure from the right in Fig. 10.10 are

σ11Λ2Λ3 cosα + σ21Λ2Λ3 sinα = R cosα, σ12 Λ2Λ3 cosα + σ22Λ2Λ3 sinα = R sinα. (a)
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Fig. 10.10 Several stress tensors in a simple specimen

Similarly, from the rightmost figure of the same figure, we have

σ11Λ3Λ1 sinα − σ21Λ3Λ1 cosα = 0, σ12Λ3Λ1 sinα − σ22Λ3Λ1 cosα = 0,

because the upper surface is a free surface; i.e.

σ21 = σ11 tanα, σ22 = σ12 tanα = σ11 tan2 α.

Substitution of these relations into Eq.(a) yields the Cauchy stress as

σ11(x) =
R cos2 α

Λ2Λ3
, σ12(x) =

R sinα cosα
Λ2Λ3

, σ22(x) =
R sin2 α

Λ2Λ3
. (10.109a, b, c)

Of course, knowing that
R
Λ2Λ3

in the right-hand side is a component of the Cauchy stress in the
GI

|GI |
-direction, we

easily recognize that these relations simply show the coordinate transformation Eq.(2.41) of the stress components.
Next, as the conservation law of mass demands

mass = ρ0 dV0 = ρ dV → ρ0 × 1 = ρ × Λ1Λ2Λ3 → ρ

ρ0
=

1
Λ1Λ2Λ3

, (b)

the Kirchhoff stress corresponding to the Cauchy stress above is obtained from its definition in Eq.(10.96) as

τK
11 =

ρ0

ρ
σ11 = Λ1Λ2Λ3 σ11 = RΛ1 cos2 α, τK

12 = RΛ1 sinα cosα, τK
22 = RΛ1 sin2 α, (10.110a, b, c)

implying some ambiguity of this stress tensor. Also, the traction f̃1 on the surface with normal vector g1 directly
relating to the Kirchhoff stress may be calculated by

f̃1 = τK
11 g1 + τ

K
12 g2.

Then, decomposing it into the
G1

|G1|
- and

G2

|G2|
-directions, we must have

f̃1 = τK
11 g1 + τ

K
12 g2 = τ̃

K
11

G1

|G1|
+ τ̃K

12
G2

|G2|
,

and the components τ̃K
11 and τ̃K

12 are obtained as

τ̃K
11 = τ

K
11 cosα + τK

12 sinα = RΛ1 cosα, τ̃K
12 = τ

K
12 cosα − τK

11 sinα = 0.

Eventually, since the first Piola-Kirchhoff stress can be calculated by

f̃1 = τK
11 g1 + τ

K
12 g2 = τ̃

K
11

G1

|G1|
+ τ̃K

12
G2

|G2|
= T R

11 G1 + T R
12 G2,

we have

T R
11 =

τ̃K
11

|G1|
=
τ̃K

11

Λ1
= R cosα, T R

12 =
τ̃K

12

Λ2
= 0.

Similar manipulation on the surface with its normal vector g2 leads to

τ̃K
21 = τ

K
21 cosα + τK

22 sinα = RΛ1 sinα, τ̃K
22 = τ

K
22 cosα − τK

21 sinα = 0,
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to obtain

T R
21 =

τ̃K
21

|G1|
=
τ̃K

21

Λ1
= R sinα, T R

22 =
τ̃K

22

Λ2
= 0.

Namely, we have

T R
11(x) = R cosα, T R

12(x) = 0, T R
21(x) = R sinα, T R

22(x) = 0. (10.111a, b, c, d)

It may show that they are transpose of the nominal stress components, but apparently these two tensors are physi-
cally different quantities because the different tractions are evaluated to define their components.

So far, calculations are carried out through the mechanical and geometric considerations. We here check them
by using the relations between stress tensors in the preceding section. This deformed state is so simple that the
deformation gradient is given by Eq.(10.34); i.e.

(
∂xi

∂XJ

)
=

(
xi,J

)
=

 cosα − sinα 0
sinα cosα 0

0 0 1


 Λ1 0 0

0 Λ2 0
0 0 Λ3

 =
 Λ1 cosα −Λ2 sinα 0
Λ1 sinα Λ2 cosα 0

0 0 Λ3

 .
By the use of this gradient, substituting Eq.(10.107) into Eq.(10.99) with Eq.(b), we can obtain

σ11 =
ρ

ρ0
x1,1 x1,1 S11 =

1
Λ1Λ2Λ3

Λ2
1 cos2 α

R
Λ1
=

R cos2 α

Λ2Λ3

σ12 =
ρ

ρ0
x1,1 x2,1 S11 =

1
Λ1Λ2Λ3

Λ2
1 sinα cosα

R
Λ1
=

R sinα cosα
Λ2Λ3

σ22 =
ρ

ρ0
x2,1 x2,1 S11 =

1
Λ1Λ2Λ3

Λ2
1 sin2 α

R
Λ1
=

R sin2 α

Λ2Λ3

which are identical with those of Eq.(10.109).
Next, substitution of Eq.(10.107) into Eq.(10.101) yields the first Piola-Kirchhoff stress as

T R
11 = x1,1 S11 =

R
Λ1
Λ1 cosα = R cosα, T R

21 = x2,1 S11 = R sinα

which is equivalent to Eq.(10.111). Similarly, from Eq.(10.79), we obtain the nominal stress as

S N
11 = S11 x1,1 =

R
Λ1
Λ1 cosα = R cosα, S N

12 = S11 x2,1 = R sinα

which is the same as Eq.(10.108). Incidentally, when the deformation is small enough to have Λi ≃ 1 and α ≃ 0,
there exists no difference between stress tensors.

Fig. 10.11 Nominal stress

By the way, most readers are not familiar with the term ‘nominal stress’ as a
stress tensor. Usually, the ‘nominal stress’ (not the nominal stress tensor)7 is a
scalar stress evaluated by the load cell measurement and the initial cross-sectional
area in the standard tensile tests. Also, the first Piola-Kirchhoff stress tensor is
supposed to correspond to this scalar nominal stress. However, the tensile speci-
mens rotate after the Lüders bands develop as is shown in Fig. 10.11, and the scalar
nominal stress is measured to the direction of the spatially fixed coordinate system. Therefore, this scalar nomi-
nal stress can be interpreted as one kind of physical component of the nominal stress tensor rather than the first
Piola-Kirchhoff stress tensor.

10.3.4 Objective Stress Rates
Generally, most engineering materials undergo plastic deformation in the state of the finite deformation. In many
models of plasticity, the history-dependent characteristics are taken into account through the flow rule which is
usually defined in terms of the incremental deformation or the rate of change of deformation. Accordingly, in many
standard models constructed under the assumption of the additive decomposition in Eq.(10.73), the corresponding
elasticity is often modeled by an incremental form as

⋆
σ(x) = C(x) :

{
d(x) − dp(x)

}
, (∗)

7 Also known as ‘engineering stress’ or ‘conventional stress.’
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where d is the deformation rate, and dp is its plastic part; C is the elasticity tensor. The deformation rate is used
here as an example, but the proper rate basing on the conjugateness with respect to the stress-work of Eq.(10.105)
must be employed depending on the choice of σ in the left-hand side. Also,

⋆
σ(x) denotes a kind of the incremental

stress or the rate of change of the stress and is called the objective stress rate.
We first explain a literal meaning of the term ‘objective.’ Remember the polar decomposition theorem, and the

deformation gradient is decomposed into the rotational part R and the stretch part. The latter part represents the
essential deformation which the materials actually feel. The deformation rate is also independent of the rotational
part ωR. Therefore, if the elasticity is modeled in the form of Eq.(∗), the stress rate in the left-hand side must be
also free from rotation and should represent genuine resistance of the materials. Such a rate is called the objective
stress rate. A stress rate observed from the coordinate system which rotates together with the materials may
become a candidate of the objective stress rates. For example, the rate of change of the second Piola-Kirchhoff
stress Ṡ may be one of such candidates. However, it is not so realistic to trace deformation from the initial state
through the ultimate stage by using the second Piola-Kirchhoff stress. Furthermore, considering that the plasticity
is a tangential resistance property in the current configuration, we believe that the updated Lagrangian approach
explained later in Sec. 10.4 may be appropriate to employ in order to express such incremental constitutive models.

σ0
2

O 1

ωt

Fig. 10.12 Objective stress rate

As a typical example of the incremental stress in the current config-
uration, we first examine the material derivative of the Cauchy stress in
a rigidly rotating body as is shown in Fig. 10.12. This figure depicts a
bar8 resisting with a constant stress σ0 which rotates by a constant angu-
lar velocity ω. Suppose that this bar is horizontal at time t = 0, and the
Cauchy stress components are calculated from the coordinate transforma-
tion Eq.(2.41) as

σ11 = σ0 cos2 ωt, σ22 = σ0 sin2 ωt, σ12 =
1
2
σ0 sin 2ωt.

(10.112a, b, c)
Then, the time derivatives of these are obtained as

σ̇11 = −ωσ0 sin 2ωt, σ̇22 = ωσ0 sin 2ωt, σ̇12 = ωσ0 cos 2ωt. (10.113a, b, c)

Although this bar does NOT feel any kinds of changes of deformation, the time change of the Cauchy stress
components are NOT zero. Namely, the time derivative of the Cauchy stress cannot represent the change of
resistance inside the body and cannot be used to express the incremental constitutive models.

Then, instead of the simple time derivative, let us examine a new rate of the change of the Cauchy stress
observed from the coordinate system which rotates together with the material. Let x′i denotes such an embedded
coordinate in the current configuration which coincides with the spatially fixed coordinate at time t = t; i.e.

x′i (t) = xi(t).

From this embedded coordinate system, the change of a differential element dxi can be observed as

dxi(t + δt) = dxi(t) + δt dvi(t) =
(
δi j + δt vi, j

)
dx j(t).

But, since dx′i (t) is attached to the material, relations as

dx′i (t) = dxi(t) = dx′i (t + δt)

hold, and the equation above can be rewritten as

dxi(t + δt) =
(
δi j + δt vi, j

)
dx′j(t + δt).

Then its inverse relation is obtained as

dx′i (t + δt) =
(
δi j − δt vi, j

)
dx j(t + δt),

where the term in the parentheses in the right-hand side is a kind of the coordinate transformation between the
spatially fixed coordinate and the embedded coordinate at time t = t + δt. Incidentally, it can be proved later on
that the Cauchy stress is updated by a simple addition as

σi j(t + δt) = σi j(t) + δt σ̇i j(t). (10.114)
8 The situation in this figure illustrates the explanation in the reference [20], and is shown by Prof. Nemat-Nasser in his class of continuum

mechanics. The standard definition of the objectivity in many textbooks seems to be so mathematical that this special example is employed
here.
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Applying the coordinate transformation above to the second order tensor, we can have a relation as

σ′i j(t + δt) =
(
δik − δt vi,k

) (
δ jl − δt v j,l

)
σkl(t + δt).

Substituting this relation into the equation above, and taking only the first order terms with respect to δt, we obtain

σ′i j(t + δt) = σi j(t) + δt
[
σ̇i j − vi,k σk j − v j,k σki

]
.

Since σ′i j(t) = σi j(t) at time t = t, the rate of change of the Cauchy stress observed from the embedded coordinate
system can be defined by

⊔
σi j ≡ lim

δt→0

σ′i j(t + δt) − σ′i j(t)

δt
= σ̇i j − vi,k σk j − v j,k σki = σ̇i j − lik σk j − l jk σki, (10.115)

which is called the Oldroyd stress rate. For the rotating bar in Fig. 10.12, the kinematics are given by

v1,1 = 0, v1,2 = −ω, v2,1 = ω, v2,2 = 0. (10.116a, b, c, d)

Substituting these equations and Eqs.(10.112) and (10.113) into Eq.(10.115), we can finally show that

⊔
σ11 = 0,

⊔
σ22 = 0,

⊔
σ12 = 0;

i.e. the Oldroyd stress rate
⊔
σ actually represents the ‘feeling’ (resistance) of the bar, in which there exists no change

of resistance.
The most famous and frequently used objective stress rate is the Jaumann rate. This is also defined in an-

other embedded coordinate system which rotates with the materials but does not deform. Namely, neglecting the
deformation rate part d from the velocity gradient l in Eq.(10.115) above, we can define another stress rate by

∇
σi j ≡ σ̇i j − wik σk j − w jk σki, (10.117)

which is called the Jaumann rate of the Cauchy stress9 or the corotational stress rate. Furthermore, by adding
objective terms such as ±

(
σi j dkk

)
and ±

(
dik σk j + d jk σki

)
to this Jaumann rate, we can define an infinite number

of objective stress rates: e.g. see Fig. 10.14. For example, the Jaumann rate of the Kirchhoff stress
∇
τK is defined

by
∇
τK

i j ≡
∇
σi j + σi j dkk. (10.118)

Readers who are interested in the mathematical explanation of the objectivity should read many other good refer-
ences; e.g. [48].

10.4 Setting Current Configuration as Reference

10.4.1 Updated Lagrangian Approach
For solids, it is preferable to use the Langangian approach because the history-dependence must be taken into
account. Furthermore, especially concerning the plasticity, the tangential resistance characteristics in the current
configuration must be properly modeled. This suggests that, in describing the instantaneous behaviors, we must
let the reference configuration of the Lagrangian quantities coincide with the current configuration. This kind of
the Lagrangian formulation by setting the current configuration as the reference may be called the updated
Lagrangian approach. For example, we can set that

lim
0→t

F = I, lim
0→t

J = 1, lim
0→t

ρ0 = ρ, · · · etc., (10.119a, b, c)

where a symbol
(
lim
0→t

)
denotes a non-standard limit to make the current configuration coincident with the reference

state. Moreover, the corresponding time derivatives can be evaluated by letting the current configuration as the
references of the Lagrangian quantities after taking their time derivatives.

9 As will be shown in Fig. 10.20 later, a simple hypoelastic model using the Jaumann rate of the Cauchy stress shows an oscillating response
under the simple shear [44].
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10.4.2 Deformation Rate
First, recall that the time derivative of the logarithmic strain EL in Eq.(10.69) is not equal to the logarithmic strain
rate dL. However, when the updated Lagrangian limit in Eq.(10.119) is applied to the logarithmic strain, we can
show an equivalency as

lim
0→t

(
EL

)
=

(
0
)
, lim

0→t

(
N

)
=

(
n
)
→ lim

0→t

(
ĖL

)
=

(
n
)[

(lnΛ)˙
](

n
)t
=

(
dL

)
. (10.120)

Also, from Eq.(10.52), we obtain
lim
0→t

(
Ė

)
=

(
d
)
, (10.121)

which shows that the updated Lagrangian rate of the total Lagrangian strain coincides with the deformation rate.
From this viewpoint, the typical objective deformation tensor d is expected to be used as a measure of the rate
of change of deformation in the sense of Lagrangian description. For example, readers may accept that, in the
Prandtl-Reuss flow rule generalized for finite deformation, the deformation rate can be used as follows;

dp
i j = λpr σ

′
i j or dp

i j = λ
∂ f
∂σi j

,

where f is a yield function.

10.4.3 Stress Rates
The second Piola-Kirchhoff stress is a typical Lagrangian stress tensor and is conjugate with the Green strain from
a viewpoint of the stress-work of Eq.(10.105). The elastic Bernoulli-Euler beam theory using this pair becomes
a physically rational one as has been shown in Sec. B.2. Also, many researches have recently been carried out
employing a model of the hyperelasticity defined by this pair. In the preceding section, we show that the deforma-
tion rate is the updated Lagrangian limit of the Green strain, so that the deformation rate can be used to describe
the incremental constitutive models. Then, as a counterpart with respect to the stress-work, we here evaluate the
updated Lagrangian limit of the second Piola–Kirchhoff stress. Since XI,k xk,J = δIJ , we have a relation as

0 =
(
XI,k xk,J

)
˙= ẊI,k xk,J + XI,k ẋk,J =

(
ẊI,k + XI,m vm,k

)
xk,J → ẊI, j = −XI,k vk, j. (∗)

After taking a time derivative of Eq.(10.99), substituting Eqs.(∗) and (10.58) into it, we obtain

ṠIJ = J vk,k σi j XI,i XJ, j − J XI,k vk,i XJ, j σi j − J XJ,k vk, j XI, j σi j + J XI,i XJ, j σ̇i j.

Then, the updated Lagrangian limit of this derivative yields a new stress rate defined by

ṡi j ≡ lim
0→t

ṠIJ = σ̇i j + vk,k σi j − vi,k σk j − v j,k σik. (10.122)

Since Eqs.(10.112), (10.113) and (10.116) hold in the case of rigid motion in Fig. 10.12, Eq.(10.122) results in

ṡ11 = 0, ṡ22 = 0, ṡ12 = 0,

indicating that this new stress rate is also objective. This stress rate ṡ is hereafter denoted by
∨
σ and is called the

Truesdell stress rate defined by

∨
σi j ≡ ṡi j = σ̇i j + vk,k σi j − vi,k σk j − v j,k σki =

(∇
σi j + σi j dkk

)
− dik σk j − d jk σki, (10.123)

where the term in the parentheses of the last equation is the Jaumann rate of the Kirchhoff stress given by
Eq.(10.118). Moreover, it is related to the Oldroyd stress rate in Eq.(10.115) as

∨
σi j =

⊔
σi j + σi j dkk, (10.124)

so that these are identical for the incompressible materials.
Incidentally, the Truesdell stress rate can be decomposed as

corotational︷             ︸︸             ︷
∨
σi j = σ̇i j − wik σk j − w jk σki +

1
3
σi j dkk − d′ik σk j − d′jk σki︸                     ︷︷                     ︸ ︸                            ︷︷                            ︸

∇
σi j refer to deformed coord. system

, (10.125)
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σ ∇
σ

∨
σ

wi j dkk d′i j

σ̇

Fig. 10.13 Decomposition and physical meanings of Truesdell stress rate

and is interpreted as is shown in Fig. 10.13. The Truesdell stress rate is the increment of the second Piola-Kirchhoff
stress, and represents the incremental resistance felt by the four bars in this figure observed from the coordinate
system embedded on them. Then, the first three terms correspond to the Jaumann rate of the Cauchy stress which
excludes only spin terms from the material derivative of the Cauchy stress; i.e. the rigid rotation of GI is removed
from S = SIJ GI ⊗ GJ which is depicted by the second figure from the left. The fourth term takes into account
the volumetric deformation of the embedded coordinate system, while the fifth and sixth terms are due to the
distortional deformation which is the angle change of the normality of the base vectors GI .

embedded

Oldroyd
⊔
σi j

- Jaumann rate

(Cauchy)
∇
σi j

� +
(
dikσk j + d jkσki

)

?
Jaumann rate

(Kirchhoff)
∇
τK

i j

6
convected

∪
σi j

?
Truesdell

∨
σi j

2nd Piola-
Kirchhoff SIJ

6
updated-Lagrangian rate

⇐ typical Total Lagrangian stress

+σi jdkk

+2
(
dikσk j + d jkσki

)

discarding d

+σi jdkk

+
(
dikσk j + d jkσki

)

Fig. 10.14 Variety of objective stress rates

Next, we evaluate the rate of change of the Biot stress. From the
polar decomposition theorem, we have ḞiJ = ṘiK UKJ + RiK U̇KJ ,
and

lim
0→t

ḞiJ = li j = lim
0→t

ṘiK + lim
0→t

U̇KJ .

Also, since lim
0→t

ṘiJ = lim
0→t

ωR
i j from Eq.(10.53), Eq.(10.70) results in

lim
0→t

wi j = lim
0→t

ωR
i j.

Using these two equations, we can show that

lim
0→t

U̇KJ = li j − wi j = di j.

Since a time derivative of the Biot stress can be evaluated from
Eq.(10.104) as

ṪIJ =
1
2

(
ṠIK UKJ + UIK ṠKJ + SIK U̇KJ + U̇IK SKJ

)
,

its updated Lagrangian limit leads to a new objective stress rate as

⊙
σi j ≡ ṫi j ≡ lim

0→t
ṪIJ =

∨
σi j +

1
2

(
σik dk j + dik σk j

)
(10.126)

=
∇
σi j + vk,k σi j −

1
2

(
σik dk j + dik σk j

)
=
∇
τK

i j −
1
2

(
σik dk j + dik σk j

)
.

Relations between several typical stress rates are shown in Fig. 10.14, and
⊙
σi j above can be located between

the Truesdell stress rate and the Jaumann rate of the Kirchhoff stress. As has been stated before, addition of
the objective terms ±

(
σi j dkk

)
and ±

(
dik σk j + d jk σki

)
defines many kinds of the objective stress rates [98]. The

convected stress rate
∪
σ in the top of this figure is defined in the reference [59].

Lastly, we evaluate the rate of change of the nominal stress. With the relation in Eq.(∗), the material derivative
of Eq.(10.82) yields

Ṡ N
I j = J vk,k σm j XI,m − J XI,m vm,k σk j + J XI,m σ̇m j. (10.127)

Then, its updated Lagrangian limit results in the nominal stress rate ṅ expressed by non-symmetric tensor com-
ponents as

ṅi j ≡ lim
0→t

Ṡ N
IJ = σ̇i j + σi j dkk − vi,k σk j =

∇
σi j + σi j dkk − dik σk j + w jk σki. (10.128)

It should be noted that this rate is not objective. However, this tensor is the most important stress rate in expressing
the incremental equilibrium equation and the corresponding boundary condition.
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10.4.4 Incremental Equilibrium Equation
In simulations of elastoplastic bodies, one may choose to solve directly the incremental equilibrium equation which
should be formulated by the updated Lagrangian description. Since the simplest form of the equilibrium equation
has been obtained in Eq.(10.92) in terms of the nominal stress, its incremental form except the inertia term can be
obtained as

Ṡ N
Ji,J + ρ0 π̇i = 0. (10.129)

Then, its updated Lagrangian limit results in the incremental equilibrium equation as

lim
0→t

(
Ṡ N

Ji,J + ρ0 π̇i = 0
)
→ ṅ ji, j(x) + ρ π̇i(x) = 0. (10.130)

Also, the corresponding boundary conditions are derived from Eq.(10.91) as

m j ṅ ji = ṫi, or vi = given. (10.131)

In other words, it should be noted here that a similar form of equation in terms of the Cauchy stress as

σ̇ ji, j + ρ π̇i =×0 (10.132)

cannot hold. Substitution of Eq.(10.128) into Eq.(10.130) results in

σ̇ ji, j + σ ji, j dkk − v j,k σki, j + ρ π̇i = 0;

i.e. another form of the incremental equilibrium equation can be obtained as

σ̇ ji, j − v j,k σki, j + ρ π̇i + σ ji, j dkk = 0.

Or, substituting the equilibrium Eq.(10.84) except the inertia term into this equation, we obtain the incremental
equilibrium equation in terms of the Cauchy stress as

σ̇ ji, j − v j,k σki, j + ρ π̇i − ρ πi dkk = 0, (10.133)

which is also found in the reference [107].

10.4.5 Update of Stress
In the preceding section, we show that the incremental equilibrium in the form of Eq.(10.132) cannot hold, but a
simple addition has been used in Eq.(10.114) to update the Cauchy stress as10

σi j(t + ∆t) = σi j(t) + σ̇i j(t). (10.134)

For example, the unit area used in the left-hand side must be defined in the configuration at t = t+∆t, while that in
the right-hand side is defined in the state at t = t. Is it acceptable? First of all, since σi j(t) refers to the unit area at
time t = t, the corresponding increment per the same unit area should be the updated Lagrangian stress increment:
i.e. the nominal stress rate. Then, the stress in the configuration at t = t + ∆t per the unit area at time t = t can be
calculated by a simple addition as σi j(t) + ṅi j(t). Therefore, this stress expresses the nominal stress at t = t + ∆t
referring to the configuration at t = t as

S N
i j (t + ∆t; t) = σi j(t) + ṅi j(t).

In the left-hand side of this equation, since the reference configuration of the nominal stress is the state at t = t,
its argument declares the reference state t after the semi-colon, and its first subscript is denoted by the lower-case
letter. Putting this equation into Eq.(10.82), we can update the Cauchy stress as

σi j(t + ∆t) =
ρ(t + ∆t; t)

ρ(t)
xi,k(t + ∆t) S N

k j(t + ∆t; t) =
ρ(t + ∆t; t)

ρ(t)
(
δik + vi,k

) (
σi j(t) + ṅi j(t)

)
,

10 Rigorously speaking, we should employ a symbol σ̇i j(t)∆t for the increment as has been used in Eq.(10.114). But, for simplicity, we here
express increments by symbols with a super-dot.
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where the lower-case letters are used in the indices in xi,k, because the current configuration is treated as its refer-
ence. Substitution of Eqs.(10.117) and (10.128) into this equation results in

xi,k S N
k j =

(
δik + vi,k

) (
σk j + σ̇k j + σk j dll − vk,l σl j

)
= σi j + σ̇i j + σi j dkk.

Also, using the relation

ρ(t + ∆t; t)
ρ(t)

=
(
det

(
xi, j(t + ∆t)

))−1
= (1 + dkk)−1 = 1 − dkk,

we can eventually prove Eq.(10.134) as

σi j(t + ∆t) = (1 − dkk)
(
σi j + σ̇i j + σi j dkk

)
= σi j(t) + σ̇i j(t).

Of course, all the higher order terms with respect to the increments are neglected. When the increments are not so
small, we have to calculate numerically the following equation;

σi j(t + ∆t) =
1

det
(
δmn + vm,n(t)

) {
δik + vi,k(t)

} {
σk j(t) + ṅk j(t)

}
(10.135)

showing that the results do not always become symmetric.
Here, we need to check consistency between this updating rule in Eq.(10.134) and the incremental equilibrium

Eq.(10.133) in terms of the Cauchy stress above. To that end, let a position vector at time t = t in the spatially
fixed coordinate system be denoted by ξI(t), and also let xi(t + ∆t) be the corresponding position at time t = t + ∆t.
Then, Eq.(10.134) can be written as

σ∆t
ji (x) = σJI(ξ) + σ̇JI(ξ).

In this equation, the superscript ∆t indicates quantities at time t = t + ∆t, while the upper-case letter I refers to the
coordinate ξ at time t = t. Differentiating this equation, we have

σ∆t
ji, j = σJI, j + σ̇JI, j = σJI,K ξK, j + σ̇JI, j = σJI,K

(
δK j − vK, j

)
+ σ̇JI, j = σJI, j − σJI,K vK, j + σ̇JI, j,

and, therefore, the equilibrium equation at time t = t + ∆t can be evaluated by

σ∆t
ji, j + ρ

∆t π∆t
i = 0 = σJI, j − σJI,K vK, j + σ̇JI, j + ρ

∆t π∆t
i .

Substituting Eq.(10.84) into the first term of the right-hand side, and taking a limit as ∆t → 0, we arrive at a relation
as

σ̇JI, j − σJI,K vK, j +
(
ρ∆t π∆t

i − ρ πI

)
= 0 → σ̇ ji, j − σ ji,k vk, j + (ρ πi)˙= 0,

where, as a limit, the upper-case letters in the indices are replaced by the lower-case letters. Furthermore, since
Eq.(10.59) yields

(ρ πi)˙= ρ̇ πi + ρ π̇i = −ρ πi dkk + ρ π̇i,

the above equation becomes
σ̇ ji, j − v j,k σki, j + ρ π̇i − ρ πi dkk = 0,

which eventually coincides with Eq.(10.133).
Finally, let us examine the update of the Kirchhoff stress. In the expression of Eq.(10.96), substitution of the

update of the Cauchy stress in Eq.(10.134) into the Kirchhoff stress at time t = t + ∆t results in

τK
i j(t + ∆t) =

ρ0

ρ(t + ∆t)
σi j(t + ∆t) =

ρ0

ρ(t)
ρ(t)

ρ(t + ∆t)

{
σi j(t) + σ̇i j(t)

}
.

On the other hand, the material derivative of Eq.(10.96) yields

τ̇K
i j(t) =

ρ0

ρ(t)

{
σ̇i j(t) + σi j(t) dkk(t)

}
.

Since we can evaluate as
ρ(t)

ρ(t + ∆t)
= 1 + dkk(t), neglecting the higher order terms of the increments, we obtain an

updating rule as

τK
i j(t + ∆t) =

ρ0

ρ(t)
{1 + dkk(t)}

{
σi j(t) + σ̇i j(t)

}
=

ρ0

ρ(t)

{
σi j(t) + σi j(t) dkk(t) + σ̇i j(t)

}
= τK

i j(t) + τ̇
K
i j(t).
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10.5 Constitutive Laws in Finite Deformation

10.5.1 Choices of Stress and Strain
(1) Stress-Strain Models

Constitutive models are often defined by relations between stress and strain. For example, a basic ‘linear elasticity’
may be specified by using an appropriate stress σ and the corresponding strain measure ϵ with a constant fourth
order tensor C as

σ = C : ϵ.

Furthermore, the ‘material nonlinearity’ can be introduced by a kind of power of the strain tensor as

σ = CO1 : ϵ + CE1 : ϵ2 + CO2 : ϵ3 + · · · ,

where COi and CEi (i = 1, 2, · · ·) are fourth order tensors, and ϵm can be defined similarly to Eq.(10.22) by

ϵ =

3∑
k=1

ϵ(k) n(k) ⊗ n(k), ϵm =

3∑
k=1

ϵ
m
(k) n(k) ⊗ n(k),

in which ϵ(k) is the principal strain, and n(k) is the corresponding principal direction. The coefficient CEi may not
be necessary for materials which show similar characteristics in both tensile and compressive deformed states just
like steel, but may play an important role for concretes and soils. Or, an expression as

σ = C̃ (σ, ϵ) : ϵ = or more generally = f (σ, ϵ)

is the most general form.
Then, we ask what will be the most proper choice for these two tensors σ and ϵ. Intuitively, it may be straight-

forward to employ the Cauchy (true) stress to describe the resisting characteristics of the material. But, it seems
to be difficult to select the corresponding strain measure even basing on the conjugateness in Eq.(10.105). On the
other hand, when the second Piola-Kirchhoff stress is chosen, a hyperelastic model associated with the Green strain
can be possible as will be explained later on. However, there exists high nonlinearity in terms of the deformation
gradient in the relation between the Cauchy stress and the second Piola-Kirchhoff stress, which is not the material
nonlinearity but the kinematical nonlinearity.

Moreover, it is quite difficult to measure directly the Cauchy stress components. One of the measurable stresses
is the nominal stress through the standard tensile tests. Still, the kinematical nonlinearity also exists in the relation
between the Cauchy stress and the nominal stress. So that, it is important to understand the influence caused by
these kinematical nonlinearity included in the definitions of the stress and strain tensors.

One of simple tests to construct constitutive models is the standard tensile test measuring the nominal stress
R and, for example, the logarithmic strain lnΛ1. The logarithmic strain can be employed partly because its rate
is essentially the objective deformation rate d which is the counterpart of the Cauchy stress with respect to the
conjugateness, and partly because it can express twice elongation and half shrinkage in a straightforward and
intuitive manner by the same magnitude with opposite signs. In order to examine the effects of the kinematical
nonlinearity included in the definitions of the stress and strain tensors, let us compare the load-deformation relations
by assuming two typical elastic constitutive models. For simplicity, suppose that principal stretches occur by the
stressing in one direction. When a linear relation is assumed between the Cauchy stress σ1 and the extensional
strain EE

1 with a constant modulus C as

σ1(x) = C EE
1 (x) = C (Λ1 − 1) , (∗)

the corresponding load-deformation relation can be obtained as

R = Λ2Λ3 σ1 = CΛ2 Λ3 (Λ1 − 1) ,

where Λ2 and Λ3 are the stretches to the other two principal directions. Namely, even when a linear constitutive
law is assumed by Eq.(∗), the relation between R and lnΛ1 becomes nonlinear. As another example, when the
second Piola-Kirchhoff stress and the logarithmic strain or the Green strain are related by linear models as

S1(X) = C EL
1 (X) = C ln {ΛI(X)} , S1 = C E1(X) = C

{
1
2

(
Λ2

1 − 1
)}
,
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Fig. 10.15 Relations between load and logarithmic strain up to ±10%

the corresponding load-deformation relations again become nonlinear as

R = Λ1 S1 = CΛ1 ln (Λ1) , R = CΛ1

{
1
2

(
Λ2

1 − 1
)}

respectively. It should be noted that these nonlinearities are not material properties but due to the kinematical
nonlinearities in the definitions of the stress and strain tensors.

Fig. 10.15 illustrates several load-deformation relations of some constitutive models in the ±10% range of
strain, although the process of calculations will be explained later on. For example, in Fig. 10.15 (a), a solid curve
is a response of an elastic linear model defined by the Lagrangian measures using the second Piola-Kirchhoff
stress and the Green strain. This curve shows a concave resistance indicating that the material apparently shows
hardening in tension and softening in compression. Are there such materials in practice? On the other hand, Fig.
10.15 (b) shows similar responses of the incompressible materials like rubbers. In this case, the solid curve utilizing
the second Piola-Kirchhoff stress and the Green strain deviates most from the linear resistance. Although many
structural materials in practice do not have such large elastic capability, in constructing constitutive models to some
extent in finite deformation, we must keep in mind that the definitions of the stress and strain tensors essentially
contain the kinematical nonlinearity shown above.

(2) Incremental Models
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Kirchhoff

O

Fig. 10.16 Relations between load and logarithmic strain
up to ±10% of incremental models

In plasticity, the flow rule is given by the incremental
form. Thus, the corresponding elasticity is often de-
fined by the increments of the stress and strain. In such
cases, the objective tensors must be employed. For ex-
ample, elastic resistance may be defined by

⋆
σ(x) = C(x) : d(x) or

⋆
σ(x) = C(σ, x) : d(x),

and elastoplastic relation may be given by

⋆
σ(x) = C(σ, x, history(X)) :

{
d(x) − dp(x)

}
,

where C may be constant. Fig. 10.16 shows several
elastic load-deformation relations of some constitutive
models in the ±10% range of strain using several typ-
ical objective stress rates

⋆
σ with constant C. Choices

of the stress and strain rates and the procedure of cal-
culations will be explained later on. An almost linear
response is obtained when one of the updated-Lagrangian measures, the Truesdell stress rate, is used.
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10.5.2 Hyperelasticity and Hypoelasticity
The hyperelasticity is a generalization of Eq.(2.65b) and can be defined only when there exists a strain energy
density function ϕ such as

ϕ̇ =
1
ρ
σi j d ji =

1
ρ0

SIJ ĖJI , (10.136)

where ρ0 and ρ are mass densities before and after deformation respectively, and the right-hand side is the stress-
work ẇ.11 In such a case, we can define a constitutive model as

SIJ =
∂ (ρ0 ϕ)
∂EIJ

. (10.137)

Although it is unlikely, if (ρ0 ϕ) is specified by a quadratic form in terms of E with a constant coefficient tensor,
the model is equivalent with the material as S = C E12 with a constant C used in the previous examples. Moreover,
it should be noted that Eq.(10.137) does not always have clear physical meanings, because the definitions of
the second Piola-Kirchhoff stress and the Green strain have nonlinear characteristics in terms of the deformation
gradient.

One special example can be found in Sec. B.2 where the elastic Bernoulli-Euler beam theory in finite dis-
placement is formulated with a strain energy density function defined by a quadratic form in terms of the physical
components of these tensors and Young’s modulus E as

ρ0 ϕ ≡
1
2

E e2, e ≡
√

1 + 2 E11 − 1 = ϵ + x3 κ,

where e and κ are the extension and the curvature of the beam axis respectively. Then the corresponding stress-
strain relation becomes

σ ≡ √g S11 =
∂ {ρ0 ϕ(e)}

∂e
= E e → ϕ(e) ≡ 1

2ρ0
E e2 → S11 =

∂ {ρ0 ϕ(e)}
∂E11

= E
e

1 + e
(10.138a, b, c)

which is a hyperelastic model in terms of the physical components of the stress and strain tensors. Or, equivalently,
it can be converted into another form of the strain energy function as

S11 =
∂ {ρ0 ϕ (E11)}

∂E11
= E

e
1 + e

→ ρ0 ϕ (E11) ≡ E
(
E11 −

√
1 + 2E11

)
→ ϕ(e) ≡ 1

2ρ0
E

(
e2 − 2

)
(10.139a, b, c)

which is not a quadratic function in terms of the Green strain.
The most famous and typical example of the hyperelasticity is known as the Mooney-Rivlin model for an

incompressible material like rubbers, and the strain energy density function is defined by

ϕ =
µ

2
(I1 − 3) + µ (I2 − 3) , (10.140)

where µ and µ are material parameters, and I1 and I2 are the first and second invariants of certain properly defined
tensor representing deformation. For example, when U is chosen, we have

(
U

)
=


Λ1 0 0
0 Λ2 0

0 0
1
Λ1Λ2

 , I1 = UIJ UIJ , I2 =
1
2

{
I2
1 − (UKI UKJ) (ULI ULJ)

}
. (10.141a, b, c)

On the other hand, the hypoelasticity is expressed by an incremental form as

∇
σi j = Ci jkl dkl, (10.142)

where the elasticity tensor Ci jkl is generally a function of stress. It should be noted that this hypoelastic model is
NOT conservative;13 i.e. the energy dissipation is inevitable even in elasticity. For an isotropic hypoelastic model,

11 Several expressions of the stress-work in the internal energy ė are enumerated in Eq.(10.105) in terms of the typical stress tensors.
12 This model with the isotropic tensor C is called the Saint Venant-Kirchhoff material but is known to be not practical [7]
13 Namely, since Eq.(10.142) is not integrable in general under any arbitrary stress states, some residual stresses exist after the unloading. So

that, in order to secure the conservativeness, several choices of the spins have been examined for re-definitions of the Jaumann rate; e.g.
[23, 45, 46, 53].
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the components of the tangent modulus C independent of the stress terms are given by Eq.(2.49b). The general
form of C is expressed by

Ci jkl = c0 δi jδkl + c1 1/2
(
δikδ jl + δilδ jk

)
+ c2 σi jδkl + c3 δi jσkl + c4

(
σikδ jl + δikσ jl

)
+ c5 σimσm jδkl + c6 σi jσkl + c7 δi jσkmσml + c8

(
σimσmkδ jl + σ jmσmlδik

)
(10.143)

+ c9 σimσm jσkl + c10 σi jσkmσml + c11 σimσm jσknσnl,

where the coefficients c0 through c11 can be defined in terms of the stress invariants [99, 116]. However, in
practice, it is almost impossible to determine these constants by a certain number of independent experimental
measurements.

10.5.3 Several Definitions of Elasticity
(1) Stress-Strain Models

As the simplest orthogonal model, we here examine several typical constitutive equations relating an appropriate
stress tensor σ to the corresponding properly chosen strain tensor ϵ with a constant coefficient C as

σ = C : ϵ. (10.144)

The purpose is to clarify the effects of the geometric nonlinearity included in the definitions of the stress and
strain tensors quantitatively. As candidates of the stress σ, we here choose the second Piola-Kirchhoff stress S,
the Kirchhoff stress τK and the Cauchy stress σ. Furthermore, the nominal stress SN is also employed because its
components are to some extent easy to measure directly. The corresponding strains ϵ are selected on the basis of
the conjugateness of the stress work in Eq.(10.105); i.e.

ẇ =
1
ρ
σi j d ji =

1
ρ0
τK

i j d ji =
1
ρ0

S N
I j Ḟ jI =

1
ρ0

SIJ ĖJI =
1
ρ0

TIJ ĖE
JI . (10.105) copied.

It suggests combinations14 as

ϵ B E for σ B S,
ϵ B EE , EL for σ B τK, σ, SN .

One of the simplest model may be based on a quadratic form of the strain energy density function ϕ in terms
of a proper deformation measure. For simplicity, considering that the cylindrical bar is subjected to the principal
stretching to the orthogonal three axes, we may write the stress and strain relation as

σ11
σ22
σ33

 =
 C0 C1 C1

C1 C0 C1
C1 C1 C0



ϵ11
ϵ22
ϵ33

 . (10.145)

Let R and Λ1 = ΛL denote the nominal stress and the stretch to the x1-direction. Then, the corresponding stress
and deformation are given by σ22 = 0, σ33 = 0, ϵ22 = ϵ33 and Λ2 = Λ3 = ΛT from Eq.(10.145); i.e.

ϵ22 = −
C1

C0 +C1
ϵ11, σ11 =

C0 (C0 +C1) − 2 C2
1

C0 +C1
ϵ11.

The stress components can be calculated from Eqs.(10.107), (10.108), (10.109) and (10.110) by letting α be zero;
i.e.

σ11 B S11 =
R
ΛL

, σ11 B σ11 =
R
Λ2

T

, σ11 B τK
11 = RΛL, σ11 B S N

11 = R.

When the Green strain is used, Eq.(10.23) results in

ϵ11 B
1
2

(
Λ2

L − 1
)
, Λ2

T = 1 − C1

C0 +C1

(
Λ2

L − 1
)
.

14 Rigourouly speaking, since the nominal stress is a non-symmetric tensor, it is not appropriate to relate it linearly to the symmetric strain
tensor. However, since only an uniaxial loading condition is examined in the examples below, it is employed simply for comparisons of
the characteristics of the tensors. Also, EE is here chosen for the nominal stress, because Eq.(10.105) shows the pair of the nominal and
the deformation gradient Ḟ, and because the essential deformation part of F is U = I + EE .
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Fig. 10.17 Relations between load and large logarithmic strain

When the extensional strain is used, Eq.(10.44a) yields

ϵ11 B ΛL − 1, ΛT = 1 − C1

C0 +C1
(ΛL − 1) ,

while, for the logarithmic strain, Eq.(10.44b) gives

ϵ11 B ln(ΛL), lnΛT = −
C1

C0 +C1
lnΛL.

Fig. 10.17 (a) illustrates responses of the materials with C1/C0 = 1/2 which corresponds to the model with Pois-
son’s ratio ν = 1/3 of the Hooke law in the infinitesimal deformation theory. By its definition, it is natural that a
linear response is obtained from the linear model with the nominal stress, but there may not exist such a material in
practice. All other models have nonlinear characteristics which are due to the kinematical nonlinearity included in
the definitions of the stress and strain tensors. Only the model with the second Piola-Kirchhoff stress has somewhat
strange responses in which, for example, R has a peak at ΛL = 1/√3 in compression. This model is often called the
Saint Venant-Kirchhoffmaterial [7]. The other two models show more or less the same kinematics-based nonlinear
properties; apparently soften in tension and harden in compression.

For the incompressible materials, we may set C1 = −C0/2 to write
σL

σT

σT

 =
 C0 −C0/2 −C0/2
−C0/2 C0 −C0/2
−C0/2 −C0/2 C0



ϵL

ϵT

ϵT

 +


p
p
p

 .
This model coincides with a special case of Hooke’s law of Eqs.(2.44) and (2.45) in infinitesimal deformation as

σ′i j = 2G ϵ′i j, σkk = K ϵkk → σ′i j = 2G ϵ′i j, σkk = 3p,

where p expresses the average stress (negative hydrostatic pressure). This corresponds to a model with the Poisson
ratio ν = −1 (C1/C0 = λ/(λ+2µ) = −1/2), not with ν = 1/2. This specification is chosen because the incompressibility in
finite deformation can be given by Λ1Λ2Λ3 = 1, not by ϵkk = 0. Since the uniaxial stressing is examined, we have

Λ2 = Λ3 = ΛT =
1
√
ΛL

, σT = 0,

from which p can be expressed by ΛL. Here, ϵ B E is chosen for σ B S, and ϵ B EE or EL are used for σ B σ.
Eventually, we have relations as

R
C0
=

3
4

(
Λ3

L − 1
)

for σ B S and ϵ B E, and

for σ B σ,
R

C0
=

3
2

(
1 − Λ−3/2

L

)
when ϵ B EE ,

R
C0
=

9
4

ln(ΛL)
ΛL

when ϵ B EL.
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The responses are shown in Fig. 10.17 (b).
The most famous hyperelastic model of incompressible materials is the Mooney-Rivlin model in Eq.(10.140).

As an example, we define

ϕ =
C0

2
(I1 − 3) +C1 (I2 − 3) , (10.146)

where I1 and I2 are the first and second invariants of the deformation tensor C as

I1 = FkJ FkJ , I2 =
1
2

{
I2
1 − (FkI FkJ) (FlI FlJ)

}
,

(
F

)
=


Λ1 0 0
0 Λ2 0

0 0
1
Λ1Λ2

 . (10.147a, b, c)

Then, the nominal stress may be defined by

S N
I j =

∂ϕ

∂x j,I
− p XI, j = C0 x j,I − 2C1

{(
xk,J xk,J

)
x j,I − x j,K xl,K xl,I

}
+ p XI, j, (10.148)

from which the Cauchy stress is expressed by

σi j = xi,K S N
K j = C0 x j,I xi,I − 2C1

{(
xk,J xk,J

)
x j,I xi,I − x j,K xl,K xl,I xi,I

}
+ p δi j. (10.149)

In the uniaxial loading, eliminating p to obtain Λ2 and Λ3, we finally get a relation as

σ11 = RΛL =

(
C0 + 2C1

1
ΛL

) (
Λ2

L −
1
ΛL

)
, Λ2 = Λ3 =

1
√
ΛL

.

Equating the stiffness at ΛL = 1 to that in the previous examples, we have

C1

C0
= −1

8
,

and the results are also plotted in Fig. 10.17 (b) with an index ‘MR−’. This negative ratio corresponds to the
isotropic elasticity with Poisson’s ratio at ν = −1/7, and thus the material can be stable and may be manufactured by
some composites. Only for comparison purpose, the results with a positive ratio at

C1

C0
=

1
8

are also shown with an index ‘MR+’. Again in this incompressible materials, only the response with the second
Piola-Kirchhoff stress deviates from other cases. It is interesting that the responses of the Mooney-Rivlin model
are more or less linear, although the constitutive equation may seem to be highly nonlinear.

(2) Incremental Models

Generalizing the hypoelasticity, we can define incremental constitutive models by using an objective stress rate
⋆
σ(x) and the deformation rate as

⋆
σ(x) = C(σ, x, history(X)) : d(x). (10.150)

One of the frequently used models is specified by relating the Jaumann rate of the Cauchy stress to the deformation
rate as

∇
σ = C : d, (10.151)

which will be hereafter called the Jaumann-rate model. As has been pointed out before, depending on the choice of
the stress rates, the hypoelasticity is not conservative. In the previous examples of triaxially stretched cases, since
the spin becomes zero, we can write 

σ̇11
σ̇22
σ̇33

 =
 C0 C1 C1

C1 C0 C1
C1 C1 C0




dL
11

dL
22

dL
33

 , (10.152)

where dL is the logarithmic strain rate defined by Eq.(10.66), and we have(
n
)
=

(
N

)
=

(
I
)
,

(
dL

)
= [ (lnΛ)˙] ,
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where
(

I
)

is the identity matrix. Then, considering Eq.(10.134) for updating the Cauchy stress, we can integrate
Eq.(10.152) above to obtain

σ11
σ22
σ33

 =
 C0 C1 C1

C1 C0 C1
C1 C1 C0




lnΛ1
lnΛ2
lnΛ3

 → σ = C : EL,

which simply coincides with the linear model between the Cauchy stress and the logarithmic strain in the previous
examples.

On the other hand, the hyperelastic model in Eq.(10.137) implies an incremental constitutive relation as

ṠIJ =

(
∂ (ρ0 ϕ)
∂EIJ

)
˙
=

(
∂2 (ρ0 ϕ)
∂EIJ ∂EKL

)
ĖKL. (∗)

Then, using Eqs.(10.121), (10.122) and (10.123), the updated Lagrangian limit of Eq.(∗) leads to

∨
σi j = Ci jkl (ρ,σ) dkl, Ci jkl (ρ,σ) ≡ lim

0→t

(
∂2 (ρ0 ϕ)
∂EIJ ∂EKL

)
, (10.153a, b)

which is a tangential constitutive law between the Truesdell stress rate and the deformation rate somewhat equiva-
lent to the hyperelasticity. Its basic model may be given with the constant elastic tensor C by

∨
σ = C : d, (10.154)

which will be hereafter called the Truesdell model. Or, in place of the Truesdell stress rate, we can use the Oldroyd
stress rate as

⊔
σ = C : d. (10.155)

Instead of using the Cauchy stress, the Jaumann rate of the Kirchhoff stress in Eq.(10.118) can be employed to
assume another model by

∇
τK = C : d. (10.156)

All the Eqs.(10.154), (10.155) and (10.156) result in the following relation

σ̇11 = (α + βσ11) {ln(ΛL)}˙ → σ̇11

α + βσ11
=
Λ̇L

ΛL
,

and we can integrate this equation to obtain

σ11 =
R
Λ2

T

=
α

β

(
Λ
β
L − 1

)
, lnΛT = −

C1

C0 +C1
lnΛL,

where two constants α and β are defined by

α ≡
C0 (C0 +C1) − 2C2

1

C0 +C1
, β ≡


−C0 −C1

C0 +C1
: for the Jaumann rate of the Kirchhoff stress;

C0 + 3C1

C0 +C1
: for the Truesdell stress rate;

2 : for the Oldroyd stress rate.

Fig. 10.18 shows the responses of the four models above when C1/C0 = 1/2. For comparison, two other settings
are chosen only for the Truesdell model with C1/C0 = 1/4 and 2/3 which correspond to the cases with Poisson’s ratio
ν = 0.2 or 0.4 in the infinitesimal deformation theory. When the nominal stress is used for the ordinate in Fig.
10.18 (a), the Truesdell and Oldroyd models show more or less linear characteristics. On the other hand, when the
true stress Σ ≡ σ11 is used for the ordinate, the Jaumann rate model of the Cauchy stress shows a linear response
in Fig. 10.18 (b). In the same figure, the curve indexed by ‘hyper’ is the result of the Saint Venant-Kirchhoffmodel
(a hyperelastic model) as S = C:E and has a peak in compression at

Λ2
L =

1
2ν

{
(3 + 2ν) −

√
9 + 8ν

}
, (10.157)
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Fig. 10.18 Resistance characteristics of incremental models

and softens afterwards. Also, the true stress Σ goes to infinity at

Λ2
L =

1 + ν
ν

, (10.158)

where ΛT becomes zero. On the contrary, the Truesdell model shows somewhat straightforward resistance char-
acteristics; i.e. the response hardens in tension and softens in compression. It is the same tendency as that in the
standard tensile test in which the cross section of the specimen shrinks in tension and broadens in compression just
like the Poisson effect.

On the other hand, for the incompressible materials, since the condition of incompressibility is given by
Eq.(10.60), an incremental constitutive model can be written as

⋆
σ = C : d + ṗ I →


⋆
σ11
⋆
σ22
⋆
σ33

 =
 C0 C1 C1

C1 C0 C1
C1 C1 C0




d11
d22
d33

 +


ṗ
ṗ
ṗ

 , d22 = d33 = −
1
2

d11.

In the uniaxial stress state, eliminating ṗ from two conditions of σ̇22 = σ̇33 = 0, we can derive expressions of σ̇11
as follows: the Truesdell model can be integrated as

⋆
σ B

∨
σ → R =

3
4ΛL

(C0 −C1)
(
Λ2

L − 1
)

while, in the model using the Jaumann rate of the Cauchy stress, we have

⋆
σ B

∇
σ → R =

3
2ΛL

(C0 −C1) ln(ΛL)

which is identical with the result in the previous example. Incidentally, we always have Λ2
T =

1/ΛL. Fig. 10.19
shows the results of two cases of C1/C0 = −1/2 and C1/C0 = 0. The former is the same setting as that in the previous
example, while the latter is a model of the Hooke law in the infinitesimal deformation theory in Eqs.(2.44) and
(2.45) as

σ′i j = 2G ϵ′i j, σkk = K ϵkk → σ′i j = 2G ϵi j, σkk = 3p,

which corresponds to a Hooke’s model with ν = 1/2. Solid curves express the Truesdell model, and the dashed
curves are the Jaumann-rate model. The characteristics of both the models are more or less the same as those
of the compressible cases above. Although the elasticity tensor is specified by constant coefficients, it must be
emphasized that the responses become nonlinear because of the nonlinearity in terms of the deformation gradient
included in the definitions of the stress and strain tensors as well as their rate tensors.

Although the Jaumann rate of the Cauchy stress is frequently used in the incremental elasticity as in Eq.(10.151),
a famous and strange response subjected to a simple shear has been reported [44]. So that, in order to compare
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responses in this particular loading case, we here examine the Truesdell model. Suppose that, as is shown in Fig.
10.20, the rectangular body undergoes a simple shearing by γ to the x1-dirction with keeping its height and width
unchanged. Then non-zero component of the displacement is only u1 = X2 tan γ, and the deformation gradient
becomes (

F
)
=

(
1 tan γ
0 1

)
,

(
F

)−1
=

(
1 − tan γ
0 1

)
,

where, for simplicity, only the 2 × 2 components are shown. Since the height and width are kept unchanged, no
volumetric change occurs; i.e. J = 1. Therefore, we have(

l
)
=

(
0 (tan γ)˙
0 0

)
,

resulting in the corresponding deformation rate and spin as(
d
)
=

(
0 1/2 (tan γ)˙

1/2 (tan γ)˙ 0

)
,

(
w

)
=

(
0 1/2 (tan γ)˙

−1/2 (tan γ)˙ 0

)
.

Using Eq.(10.82), we can evaluate the nominal stress in terms of the Cauchy stress as

S N
11 = σ11 − σ12 tan γ, S N

21 = σ12, S N
12 = σ12 − σ22 tan γ, S N

22 = σ22. (∗)

When the Jaumann-rate model is used, from Eq.(10.117), we have relations as

∇
σ11 = σ̇11 − σ12 (tan γ) ,̇

∇
σ22 = σ̇22 + σ12 (tan γ) ,̇

∇
σ12 = σ̇12 + (σ11 − σ22)

1
2

(tan γ) .̇

Then, since only d12 = d21 are not zero, the corresponding constitutive relations are expressed by

∇
σ11 = 0,

∇
σ22 = 0,

∇
σ12 = C̃66 d12 =

1
2

C̃66 (tan γ) ,̇

where C̃66 corresponds to the shear modulus 2G in Eq.(2.52) of infinitesimal deformation theory. From these
relations, we have

σ̇11 = σ12 (tan γ) ,̇ σ̇22 = −σ12 (tan γ) ,̇ σ̇12 =
1
2

{
C̃66 − (σ11 − σ22)

}
(tan γ) ,̇

and thus
σ̇11 + σ̇22 = 0 → σ11 + σ22 = 0

as well as
σ̇12

σ̇11 − σ̇22
=

C̃66 − (σ11 − σ22)
4σ12

.
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The latter equation can be integrated to obtain(
2σ12

C̃66

)2

+

(
σ11 − σ22

C̃66
− 1

)2

= 1.

Therefore, we can set
σ12

C̃66
=

1
2

sin θ,
σ11 − σ22

C̃66
= 1 − cos θ.

Substituting these components into the equation of σ̇12; i.e.(
σ̇12

C̃66

)
=

1
2

(
1 − σ11 − σ22

C̃66

)
(tan γ) ,̇

we obtain
1
2

cos θ (tan γ)˙=
1
2

(sin θ)˙ → (tan γ)˙= θ̇ → θ = tan γ.

Finally, all the components of the Cauchy stress components are evaluated as

σ12

C̃66
=

1
2

sin (tan γ) ,
σ11

C̃66
= −σ22

C̃66
=

1
2
{1 − cos (tan γ)} .

Substitution of these results into Eq.(∗) yields the nominal stress components as

S N
21

C̃66
=

1
2

sin (tan γ) ,
S N

12

C̃66
=

1
2

[
sin (tan γ) + tan γ {1 − cos (tan γ)}] ,

S N
11

C̃66
=

1
2

[
1 − cos (tan γ) − tan γ sin (tan γ)

]
,

S N
22

C̃66
= −1

2
{1 − cos (tan γ)} .

The response by the first equation is shown in Fig. 10.20, in which γ reaches its maximum value of 1/2 near
γ ≃ 57.5 degrees and afterwards starts to oscillate sinusoidally converging rapidly to γ → π/2. It suggests that the
Jaumann-rate model can be used only up to γ = 45 degrees.

On the other hand, in the case of the Truesdell model by Eq.(10.154), first from Eq.(10.123) we have [103]

∨
σ11 = σ̇11 − 2σ12 (tan γ) ,̇

∨
σ22 = σ̇22,

∨
σ12 = σ̇12 − σ22 (tan γ) ,̇

and the constitutive relations can be expressed by

σ̇11 = 2σ12 (tan γ) ,̇ σ̇22 = 0, σ̇12 =

{
1
2

C̃66 + σ22

}
(tan γ) .̇

Integration of these equations leads to

σ12

C̃66
=

1
2

tan γ,
σ11

C̃66
=

1
2

tan2 γ,
σ22

C̃66
= 0.

Substituting this results into Eq.(∗), we obtain

S N
21

C̃66
=

S N
12

C̃66
=

1
2

tan γ,
S N

11

C̃66
=

S N
22

C̃66
= 0.

The first relation is also shown in Fig. 10.20, in which the load goes to infinity as γ approaches to π/2. Of course, it
should be noted that the ordinate of Fig. 10.20 becomes as large as the magnitude of elastic constants.

Lastly, for the Saint Venant-Kirchhoff materials, the second Piola-Kirchhoff stress can be calculated from
Eq.(10.99) as

S11 = σ11 − 2σ12 tan γ = −1
2

C̃66 tan2 γ, S22 = σ22 = 0, S12 = σ12 =
1
2

C̃66 tan γ,

and the corresponding Green strain can be calculated using Eq.(10.9) as

E11 = 0, E22 =
1
2

tan2 γ, E12 =
1
2

tan γ.
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Then a model of the Saint Venant-Kirchhoff materials which is equivalent to the elastic constitutive relation of the
Truesdell model above can be given by

S11
S22
S12

 =


C̃11 −C̃66 0
−C̃66 0 0

0 0 C̃66




E11
E22
E12

 .
It is quite interesting that this material is unstable. Or, if a constitutive model as S = C:E is specified, we can
evaluate the nominal stress components in the case of this simple shearing as

S N
11 =

1
2

(
C1 + C̃66

)
tan2 γ, S N

22 =
1
2

C0 tan2 γ, S N
12 =

1
2

C̃66 tan γ, S N
21 =

1
2

C̃66 tan γ +
1
2

C0 tan3 γ.

As a simple example, if we set C0/C̃66 = 2 which corresponds to a specification of the Poisson ratio at ν = 1/3 in the
infinitesimal deformation theory, the result is also shown in Fig. 10.20 by a dot-dashed curve.

(3) Physical Meanings of Truesdell Stress Rate

Since it is preferable to use the Lagrangian description in constructing constitutive laws of solids, an objective stress
rate called the Oldroyd stress rate has been introduced in that sense. And, the neglect of the deformation-rate terms
of the Oldroyd stress rate leads to the Jaumann rate of the Cauchy stress which has been employed for incremental
constitutive models in many researches. Then, we may ask why it is enough to ignore only the spin terms in the
non-objective stress rate σ̇; i.e. why we can neglect the deformation-rate terms of a straightforward Lagrangian
rate; e.g. the Oldroyd stress rate. As a typical example, consider some largely deformed state of a cubic crystalline
metal. Then, in comparison with the plastic part of deformation by the motion of many dislocations, the elastic part
remains infinitesimally small enough to keep the lattice structure almost orthogonal. Therefore, we can observe
the total elastically resisting behavior in a coordinate system rotating with the material; i.e. it is sufficient to neglect
only the spin terms from σ̇. However, for more flexible materials with small shear resistance like textile fabrics,
an orthogonal microstructure initially existing within the materials may easily deform to become a skew system.
Even for such materials, we ask if the corotational stress rates may be appropriate to be used in the incremental
constitutive models.

We here examine physical meanings of the Truesdell stress rate as an example of the stress rates with de-
formation rate terms. As the Truesdell stress rate is closely related to the second Piola-Kirchhoff stress through
Eq.(10.153), the Timoshenko beam theory using the second Piola-Kirchhoff stress in Sec. B.3 is employed in order
to explain physically the effect of deformation rate terms in the objective stress rates. In the Timoshenko beam
theory, the initial normality of the beam axis to the cross section cannot be kept after bending as a result of the
shear deformation γ. One of the higher-order constitutive laws for the shear force V is given by

V = GktA γ + N
γ

1 + ϵ
,

where N is the axial force: ϵ is the extension of the beam axis: kt represents the shear coefficient [11]: A and G
are the sectional area and the shear modulus. The initial normality between the axial force N and the shear force
V becomes relaxed after deformation by the shear deformation γ. Namely, the first term in the equation above
represents pure shearing material-resistance, while the second term expresses an apparent shear resistance by the
axial force, the direction of which is no longer normal to the cross section. This second term plays an important
role in the Engesser’s buckling formula [79].

Increment of the equation above results in

V̇ − N
{

1
1 + ϵ

γ̇ − γ

(1 + ϵ)2 ϵ̇

}
= GktAγ̇ + EA

γ

1 + ϵ
ϵ̇, (∗)

where only the essential material resistance parts are collected in the right-hand side. Then the second term in the
left-hand side is a contribution of the axial force to the incremental shear resistance. Because V is defined by the
Lagrangian description, this incremental expression can be considered an objective rate. For simplicity, suppose
that the shear deformation does not exist (γ = 0) in the current configuration, the incremental equation above can
be rewritten as

∆
(
Essential elastic shearing resistance

) ≡ V̇ − N γ̇ = GktAγ̇, (10.159)

where the extensional strain ϵ is also small enough to be neglected in comparison with unity. It should be noted
that the second term in the left-hand side of Eq.(∗) does not vanish.
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The instantaneous constitutive relation in Eq.(10.159) can be interpreted as a state where v1 = v1(x1, x3) and
v3 = v3(x1), and only σ11 and σ13 are non-zero stress components. In such a state, the isotropic elasticity defined
by Eq.(10.151) with the Jaumann rate of the Cauchy stress becomes

∇
σ13 = σ̇13 − σ11 w31 = 2µ d13,

where only a spin term exists in the left-hand side. Therefore it is not consistent with Eq.(10.159). On the other
hand, the elasticity defined by Eq.(10.154) using the Truesdell stress rate becomes

∨
σ13 = σ̇13 − σ11 v3,1 = 2µ d13, (10.160)

where the deformation rate remains in the left-hand side, and it becomes consistent with Eq.(10.159). Or the
constitutive law by Eq.(10.155) with the Oldroyd stress rate yields

⊔
σ13 = σ̇13 − σ11 v3,1 − σ13 v1,1 = 2µ d13.

Since Eq.(10.159) is obtained neglecting the axial strain ϵ, the term ϵ ∼ v1,1 in the equation above can be also
ignored, so that it becomes the same as Eq.(10.160). This example shows that the deformation rate terms included
in the definitions of the objective stress rates may play an important role in describing some constitutive models
especially for the shearing resistance in finite deformation theory. The effects of the second terms in the left-hand
side of Eq.(∗) will be quantitatively examined later on in buckling problems of the Timoshenko beam-columns in
Sec. 10.7.3 (1) relating to the Engesser’s formulae.

(4) Incremental Virtual Work Equation and Symmetry

The incremental equilibrium equation in terms of the nominal stress rate is given by Eq.(10.130) as

ṅ ji, j + ρ π̇i = 0.

Then the inner product of this equation by an arbitrary virtual velocity field in the current volume v formally yields
the corresponding incremental virtual work as

−
∫
v

δvi

(
ṅ ji, j + ρ π̇i

)
dv =

∫
v

(
δvi, j ṅ ji − ρ δvi π̇i

)
dv −

∫
s
δvi ṫi ds = 0, (10.161)

after the boundary condition of Eq.(10.131) is taken into account, where the integral region s represents the current
surface of the body. Note that this is not a physical virtual work, because the inner product is taken between two
incremental fields. On the other hand, using Eq.(10.128), we can express all the incremental constitutive models
in terms of the nominal stress rate and the velocity gradient as

ṅ ji = F jikl vk,l.

Substitution of this equation into the first term of the incremental virtual work equation above leads to the incre-
mental internal virtual work δU(v) as

δU(v) ≡
∫
v

δvi, j F jikl vk,l dv.

Therefore, if the constitutive model has a symmetry as

F jikl = Flki j, (10.162)

this incremental internal virtual work can be integrated instantaneously (or by the updated Lagrangian description)
to define U(v). This indicates that the functional U(v) can be defined by the updated Lagrangian description,
although the hypoelasticity is not a conservative model.

For example, when the Jaumann rate of the Cauchy stress is employed for the isotropic elasticity by Eq.(10.151)
with the coefficient

Ci jkl = µ
(
δik δ jl + δil δ jk

)
+ λ δi j δkl, (10.163)

the corresponding coefficient between the nominal stress rate and the velocity gradient becomes

Fi jkl = Ci jkl + σi j δkl +
1
2
σli δ jk −

1
2
σki δ jl −

1
2
σl j δik −

1
2
σk j δil → Fi jkl , Flk ji,
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so that, the functional U(v) cannot be defined. However, note that the symmetry holds if the Jaumann rate of the
Kirchhoff stress is employed as Eq.(10.156). On the other hand, when the isotropic elasticity is defined by the
Truesdell stress rate as Eq.(10.154), we can have the symmetry of Eq.(10.162); i.e.

Fi jkl = Ci jkl + σli δ jk → Fi jkl = Flk ji.

Several explicit expressions of the tangent stiffness in the matrix form will be given in Sec. 10.7.1 (3). Since this
coefficient Fi jkl expresses the tangential elastic coefficient under the residual stress states, it is desirable that the
functional U(v) can be defined.

10.5.4 Elastic-Plastic Models
(1) Prandtl-Reuss Model

We here explain the most standard description of a typical elastoplastic model with the Mises yield condition and
the associated J2 flow rule; i.e. the Prandtl-Reuss Model in the framework of finite deformation. Since the plasticity
is always modeled in the incremental form, it is straightforward to describe the elastic part by the hypoelasticity.
First of all, the deformation rate and the spin can be decomposed into the elastic and plastic pars as Eq.(10.73); i.e.

d(x) = de(x) + dp(x), w(x) = we(x) + wp(x). (10.164a, b)

As for the hypoelasticity, many researches have employed the Jaumann rate of the Cauchy stress. So that, using
Eq.(10.151) with the elastic coefficient in Eq.(10.163), we set

∇
σi j = Ci jkl de

kl, Ci jkl = µ (δik δ jl + δil δ jk) +
(
K − 2µ

3

)
δi j δkl, (10.165a, b)

where K is the bulk modulus. Or its inverse relation can be given by

de
i j = Di jkl

∇
σkl, Di jkl =

1
4 µ

(
δik δ jl + δil δ jk

)
+

1
3

(
1

3 K
− 1

2 µ

)
δi j δkl. (10.166a, b)

On the other hand, an incremental model of the hyperelasticity in Eq.(10.137) can be defined by the updated
Lagrangian description as Eq.(10.154) using the Truesdell stress rate and will be examined in Secs. 10.6 and 10.7.

The Mises yield condition can be rewritten as

f ≡ σ − τy(ϵp), ϵp ≡
∫

history

√
2 dp

i j dp
i j dt, (10.167a, b)

where σ is the effective stress defined by Eq.(9.23b). Also, the flow rule can be given by

dp
i j = λ

∂ f
∂σi j

= λ
σ′i j

2σ
. (10.168)

Then, substitution of Eq.(10.167a) into the consistency condition
(

ḟ = 0
)

results in

λ =
1
H

∂ f
∂σi j

σ̇i j =
σ′i j

2 H σ
σ̇i j, H ≡ ∂τy(ϵp)

∂ϵp . (10.169a, b)

Putting this equation back into Eq.(10.168), we can express the plastic part by

dp
i j =

1
H

σ′i j σ
′
kl

4σ2 σ̇kl. (10.170)

Furthermore, using Eq.(10.117), we can finally express Eq.(10.170) in terms of the Jaumann rate as

dp
i j =

1
H

σ′i j σ
′
kl

4σ2

∇
σkl. (10.171)

Eventually, substituting Eqs.(10.166) and (10.171) into Eq.(10.164), we can write the elastoplastic incremental
constitutive rule by

di j =

Di jkl +
1
H

σ′i j σ
′
kl

4σ2

 ∇σkl, (10.172)
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and its inverse relation as
∇
σi j =

Ci jkl −
µ2

µ + H

σ′i j σ
′
kl

σ2

 dkl. (10.173)

The loading conditions in Eq.(9.40) can be generalized by

Elastic state: λ = 0 if f < 0; (10.174a)

Unloading: λ = 0 if f = 0 and σ′i j
∇
σi j < 0; (10.174b)

Neutral loading: λ = 0 if f = 0 and σ′i j
∇
σi j = 0; (10.174c)

Loading: λ > 0 if f = 0 and σ′i j
∇
σi j > 0. (10.174d)

(2) Non-Associated Flow Rule

The next example is a generalization of the Prandtl-Reuss model above which employs a non-associated flow rule
[61]. The model explained in Sec. 9.4.2 is a version in infinitesimal deformation theory of the original model
formulated below. First of all, the yield function f and the plastic potential g are defined by

f ≡ σ − F(I1,∆
p, ϵp), g ≡ σ +G(I1), (10.175a, b)

where I1 is the first invariant of the stress defined by Eq.(2.36), and the plastic volumetric strain and the plastic
effective shear strain are defined by

∆p ≡
∫

history

ρ0

ρ
dp

kk dt, ϵp ≡
∫

history

√
2 dp′

i j dp′
i j dt. (10.176a, b)

Substitution of the plastic potential in Eq.(10.175) into the flow rule in Eq.(9.74a) yields

dp
i j = λ

σ′i j

2σ
+ β δi j

 , β = β(I1) ≡ ∂G(I1)
∂I1

. (10.177a, b)

Since the consistency condition can be evaluated by

ḟ =
∂σ

∂σi j
σ̇i j −

∂F
∂I1

İ1 −
∂F
∂∆p ∆̇

p − ∂F
∂ϵp ϵ̇

p
= 0,

considering Eqs.(9.37) and (10.176), we have a relation as

σ′i j

2σ
σ̇i j −

∂F
∂I1

σ̇kk =
ρ0

ρ

∂F
∂∆p dp

kk +
∂F
∂ϵp

√
2 dp′

i j dp′
i j. (10.178)

Putting Eq.(10.177) into this equation, we obtain λ as

λ =
1
H

(
σ′kl

2σ
− ∂F
∂I1

δkl

)
σ̇kl, H ≡ 3

ρ0

ρ

∂F
∂∆p β +

∂F
∂ϵp , (10.179a, b)

where H is the hardening coefficient. Substituting this relation back into Eq.(9.125), we finally express the plastic
deformation rate as

dp
i j =

1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
σ̇kl, α = α(I1,∆

p, ϵp) ≡ −∂F(I1,∆
p, ϵp)

∂I1
. (10.180a, b)

Or, the material derivative of the Cauchy stress can be replaced by the Jaumann rate of the Cauchy stress to obtain

dp
i j =

1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
∇
σkl. (10.181)

If the elasticity is modeled by the Hooke law of Eq.(10.166), the additive decomposition in Eq.(10.164) leads
to

di j = Di jkl
∇
σkl +

1
H

σ′i j

2σ
+ β δi j

 (
σ′kl

2σ
+ α δkl

)
∇
σkl, (10.182)

and its inverse relation is expressed by

∇
σi j = Ci jkl dkl −

µσ′i j

σ
+ 3K β δi j

 (
µσ′kl

σ
+ 3K α δkl

)
H + µ + 9K α β

dkl. (10.183)



482 CHAPTER 10. FINITE DEFORMATION THEORY

(3) Non-Coaxial Model

Some materials do not show the normality rule in plasticity. One of such models introduced in Sec. 9.4.3 [67] has
a non-coaxial term in the flow rule; i.e. an additional component coaxial to the incremental stress is included as

dp
i j = λ

∂g

∂σi j
+

1
2 h1

(
∇
σ′i j −

1

2σ2 σ
′
i j σ
′
kl
∇
σkl

)
, (10.184)

where the yield function and the plastic potential are the same as those in Eq.(10.175). Formulation of the complete
model has been explained in Sec. 9.4.3. The plastic strain increment can be approximated by

dp
i j =

1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
∇
σkl +

1
2 h1

(
∇
σ′i j −

1

2σ2 σ
′
i j σ
′
kl
∇
σkl

)
. (10.185)

When the elasticity is specified by Eq.(10.166), the total incremental strain is expressed by

di j =
1

2µ
∇
σi j +

1
3

(
1

3K
− 1

2µ

)
δi j
∇
σkk (10.186)

+
1
H

σ′i j

2σ
+ β δi j

 {
σ′kl

2σ
+ α δkl

}
∇
σkl +

1
2 h1

(
∇
σ′i j −

1

2σ2 σ
′
i j σ
′
kl
∇
σkl

)
,

which coincides with Eq.(9.140) by replacing the stress rate and the strain rate by the Jaumann rate of the Cauchy
stress and the deformation rate respectively.

(4) Slip Line Model for Single Crystals

Inside the crystalline metals, the plastic deformation is usually caused by the motion of the dislocations. Such a
microscopic behavior has been modeled to construct a constitutive law by Asaro [1, 3], in which the motion of
the dislocations is replaced by continuously distributed slips. Since the elastic deformation is considered to be
the distortion of the crystalline lattice independent of the motion of the dislocations, the elasticity is defined by a
hypoelasticity observed from the framework rotating with the elastic deformation only as

◦
σi j + σi j de

kk = Ci jkl de
kl, (10.187)

where a new Jaumann rate of the Kirchhoff stress is defined by

◦
σi j ≡ σ̇i j − we

ik σk j − we
jk σki, (10.188)

using only the elastic part of the spin.

nα

sα

γ̇α

γα

Fig. 10.21 α-slip system

The mechanism of the plastic deformation is then modeled by continuously
distributed slip surfaces, on which slidings occur and accumulate simulating the
motions and pileups of dislocations. Fig. 10.21 shows an α-th slip surface the
unit normal vector on which is denoted by nα, and the sliding deformation rate
is γ̇α. Since the sliding γ̇α is irreversible15 motion, both sliding systems to the
direction of sα as well as to its opposite direction are possible. According to
the sliding on a particular α-th slip system, a plastic velocity gradient can be
evaluated by

v
p
i, j = γ̇

α sαi nαj , α = 1, 2, · · · ,N, (10.189)

where no sum on α. The crystal structure determines the value of N and the directions of the slip surfaces. An
example of an fcc crystal will be shown in Fig. 9.16. Therefore, the plastic parts of the deformation rate and the
spin are given by

dp
i j =

∑
α

pαi j γ̇
α, w

p
i j =

∑
α

ωαi j γ̇
α. (10.190a, b)

The summation symbol
∑
α must span only on the active systems which will be specified by the loading condition

explained later on. And, pαi j and ωαi j are defined by

pαi j ≡
1
2

(
sαi nαj + nαi sαj

)
, ωαi j ≡

1
2

(
sαi nαj − nαi sαj

)
, (10.191a, b)

15 As long as one dislocation does not reach a boundary or a surface, it can move back-and-forth under the action of alternating loadings and
can be observed through the microscope.
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where no sum on α. As the crystal lattice does not rotate by the motion of dislocations, the motion of the slip
systems depends only on the elastic part of the spin, so that we can set

ṡαi = w
e
i j sαj , ṅαi = w

e
i j nαj . (10.192a, b)

This specification guarantees that the two vectors sα and nα are kept unity.
The yield condition can be specified by a condition at which the sliding starts on the α-th system; i.e. it is given

by the condition that the shearing stress on the α-th system reaches some specific value of ταy as

τα ≡ σi j sαi nαj = τ
α
y, (10.193)

where ταy is a material parameter which corresponds to the maximum frictional strength on the sliding surface.
Then, the corresponding flow rule can be specified by the Schmid law, which is an incremental form of Eq.(10.193)
above; i.e.

τ̇α =
∑
β

hαβ γ̇β. (10.194)

The parameter hαβ is a kind of the hardening parameter which expresses the material resistance on the α-th sliding
increment due to the β-th incremental slip. The physical meaning of this parameter for α , β is not so clear and is
explained in other references.

Since the material derivative of Eq.(10.193) leads to

τ̇α = σ̇i j sαi nαj + σ ṡαi nαj + σ sαi ṅαj ,

substitution of Eq.(10.192) into it results in

τ̇α = σ̇i j sαi nαj + σw
e
ik sαk nαj + σ sαi w

e
jk nαk = sαi nαj

(
σ̇i j − we

ik σk j − we
jk σki

)
.

Comparing this result with Eq.(10.188), we can express it simply by

τ̇α =
◦
σi j sαi nαj ,

showing that the flow rule is observed from the framework rotating with the crystal lattice. Using this result, and
keeping the symmetry of the Cauchy stress, we can rewrite Eq.(10.194) as

◦
σi j pαi j =

∑
β

hαβ γ̇β. (10.195)

Similarly, the yield condition of Eq.(10.193) is also rewritten as

σi j pαi j = τ
α
y. (10.196)

Therefore, the loading and unloading conditions on the α-th slip system can be specified by

Elastic state: γ̇α = 0 if σi j pαi j < τ
α
y (10.197a)

Unloading: γ̇α = 0 if σi j pαi j = τ
α
y and

◦
σi j pαi j <

∑
β

hαβ γ̇β (10.197b)

Loading: γ̇α ≥ 0 if σi j pαi j = τ
α
y and

◦
σi j pαi j =

∑
β

hαβ γ̇β. (10.197c)

Substituting the elastic law in Eq.(10.187) into the flow rule in Eq.(10.195), from the additive decomposition
in Eq.(10.164), we have a relation as

◦
σi j pαi j = pαi j

(
Ci jkl dkl − σi j dkk −Ci jkl dp

kl + σi j dp
kk

)
.

Putting the plastic deformation rate in Eq.(10.190a) into this equation, we obtain an explicit expression of Eq.(10.195)
in terms of the incremental slip as

◦
σi j pαi j = pαi j

(
Ci jkl dkl − σi j dkk

)
−

∑
β

pαi j

(
Ci jkl pβkl − σi j pβkk

)
γ̇β =

∑
β

hαβ γ̇β.
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Therefore, when the loading condition is satisfied, the incremental slip is evaluated from this equation by

γ̇α =
∑
β

Mαβ pβi j

(
Ci jkl − σi j δkl

)
dkl, (10.198)

where Mαβ is the inverse matrix of the following matrix Nαβ;

Mαβ ≡
(
Nαβ

)−1
, Nαβ ≡ hαβ + pαi j

(
Ci jkl − σi j δkl

)
pβkl. (10.199a, b)

Furthermore, taking into account the additive decomposition in Eq.(10.164) with the elastic constitutive Eq.(10.187),
we can express

∇
σi j + σi j dkk = Ci jkl dkl −

∑
α

(
Ci jkl pαkl − σi j pαkk + ω

α
ik σk j + ω

α
jk σki

)
γ̇α. (10.200)

From these two Eqs.(10.198) and (10.200), the incremental elastoplastic constitutive law of the single crystal can
be specified by

∇
σi j = Ci jkl dkl −σi j dkk −

∑
α

∑
β

(
Ci jkl pαkl − σi j pαkk + ω

α
ik σk j + ω

α
jk σki

)
Mαβ pβmn

(
Cmnpq − σmn δpq

)
dpq. (10.201)
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Fig. 10.22 Yield surfaces of a polycrystal model

This model can be employed to describe some
elastoplastic behavior of a polycrystalline metal
in plane strain state [39]. As is shown in the inset
of Fig. 10.22, each single crystal is modeled by an
elliptical region with two slip lines the angle be-
tween which is set at 70 degrees; i.e. totally four
slip systems exist as α = 1∼4. Every 2 degrees
between the two directions from 0 to 90 degrees,
46 grain orientations are chosen to simulate ran-
domly distributed single crystals. As a basic exam-
ple, no hardening is included, and the parameter ταy
in Eq.(10.193) is set at

ταy = τ
0
y = const., γ0 ≡ τ0

y

µ
.

Moreover, the average behavior as a polycrystal in the framework of finite deformation is estimated by an analytical
homogenization method explained in App. C. The parameter µ in the equation above denotes such an average shear
modulus of the polycrystal. Fig. 10.22 shows changes16 of the yield surface under the action of the monotonic
loading to the x1-direction. The initial surface is isotropic and almost circular, but the corner starts to develop to
the direction of loading with the kinematic hardening characteristics. The corner is noticeable because a finite
number of grains are used in this simulation.

10.6 Examples of Analytical Estimates

10.6.1 Localization Condition
In the standard tensile tests of steel, we can often observe a diagonal pattern of straight lines called the Lüders
band, which is considered to indicate a kind of localization of deformation. Since the material is not a single
crystal,17 the direction of localizations is nothing to do with the microscopic lattice structure, and they are called
the macroscopic slip lines or shear bands. In order to predict the incipience of such localizations, an analytical
approach [30] has been proposed.

Let ν denote the unit vector normal to a certain discontinuous surface on which the localized deformation
occurs, and the jump of the velocity gradient across the surface can be expressed by the following equation similarly
to Eq.(10.189): ⟨

vi, j

⟩
= gi ν j, (10.202)

16 Exact figure can be found in the reference [39].
17 Even in single crystals, some macroscopic slip lines are observed [2].
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where g expresses the magnitude of discontinuity. Even though this discontinuity is about to occur in a continuum,
the surface traction must be continuous across this surface, so that from Eq.(10.131) we must have⟨

ν j ṅ ji

⟩
= 0, (10.203)

where ṅ is the nominal stress rate.
As has been stated before, any incremental constitutive laws can be written by a general form as

ṅ ji = F jikl vk,l. (10.204)

Then, this equation and Eq.(10.202) are substituted into Eq.(10.203) to express the continuity condition of the
incremental traction by (

ν j F jikl νl

)
gk = 0. (10.205)

Finally, the necessary condition to obtain a real solution for the discontinuity of g is given by

det
(
ν j F jikl νl

)
= 0, (10.206)

and it is known as an incipience condition of the localized deformation. Note that the localization defined by
Eq.(10.202) is an isolated phenomena in a continuum, while the periodically distributed localization such as a
global buckling of structural members represents a dispersive localized deformation. Such a dispersive solution
bifurcated from a uniformly deformed state is usually known to occur before the isolated localization explained
above [30]. Several numerical solutions given in Sec. 10.7.3 (2) also show such dispersive or periodical localiza-
tions.

10.6.2 Two Typical Examples
Two types of hypoelasticity with the standard Prandtl-Reuss plasticity explained in Sec. 10.5.4 (1) are used to
predict the localization [87]. The isotropic elasticity is defined by either the Jaumann rate of the Cauchy stress or
the Truesdell stress rate. In the former case, we have

σ̇i j = 2µ di j + λ δi jdkk −
µ2

µ + H

σ′i jσ
′
kl

σ2 dkl + wik σk j + w jk σki, (10.207)

while the latter leads to

σ̇i j = 2µ di j + λ δi jdkk −
µ2

µ + H

σ′i jσ
′
kl

σ2 dkl (10.208)

+
µ

µ + H
σ′i jdkk −

µ

2(µ + H)

σ′i jσ
′
lm

σ2

(
vl,kσkm + vm,kσkl

)
+ vi,k σk j + v j,k σki − σi j dkk.

For example, the fifth term in Eq.(10.208) indicates a plastic softening effect of shear resistance in tension which
may result in relatively earlier initiation of the localization.

We here estimate relations between the hardening parameter and the critical stress by the localization condition
in Eq.(10.206) using the two models given by Eqs.(10.207) and (10.208). As has been employed by Hill in
the prediction of Eq.(9.173), the so-called state of ‘plastically plane strain condition’ on the x1-x2 plane is also
assumed; i.e. the stress state from the flow rule in Eq.(10.168) is set as

dp
33 = 0 → σ′33 = 0 → σ33 =

1
2

(σ11 + σ22) .

Fig. 10.23 shows the results by the uniaxial loading in the x1-direction. The ordinate is the stress level at the incip-
ience of localization, and the abscissa expresses the orientation of the localization. For the rigid-plastic materials
with H = 0, the direction of the localization is to 45 degrees from the loading axis at the minimum critical stress
as σ0/µ = 0 which is explained by σ0 = σy. Or, for non-positive hardening parameters, such localization becomes
possible in any directions at any stress level as is represented by the dot-dashed and dotted curves. However, for
materials with positive hardening parameters (solid curves in the figure), the localization can become possible at
quite high stress levels which may be one-tenth or one-hundredth of the magnitude of the shear modulus. Namely,
as has been pointed out in the reference [30], the localization defined above can be possible after the peak of the
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Fig. 10.23 Relations between stress and direction of localization in plastically plane strain state
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Fig. 10.24 Relations between stress and direction of localization in plastically plane strain state

stress-strain history. Also, in the same reference, it has been reported that the diffusive (periodical) concentration
of the strain field occurs before the incipience of the isolated localization.

The minimum stress levels of the localization and the corresponding orientations are shown in Fig. 10.24 for
positive hardening parameters, where results by another hypoelastic model using the convected stress rate are
added. The localization is possible at realistic stress levels only when the hardening parameter is almost zero
just like the mild steel. In such cases, the orientation of localization is to about 45 degrees from the loading axis
which coincides with that predicted in the infinitesimal deformation theory explained in Sec. 9.5.3. Otherwise, the
localization occurs at extremely large stress levels no matter which models are chosen. Incidentally, if an unstable
constitutive model explained in Sec. 10.5.4 (3) [38] is chosen, this critical stress level can become small.
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10.7 Examples of Numerical Estimates

10.7.1 Updated Lagrangian Approach
(1) Basic Equations

In practice, some numerical approaches are needed to solve arbitrary boundary value problems. One of such
approaches is the FEM which will be employed here. Since the plasticity is modeled in the incremental form, it is
sufficient to use the incremental step-by-step analysis without any iterative schemes. To this end, we start with the
incremental virtual work Eq.(10.161) in the updated Lagrangian description. First of all, the update of the Cauchy
stress is given by the following equation as has been explained in Sec. 10.4.5;

σi j(t + ∆t) = σi j(t) + σ̇i j(t). (10.209)

Moreover, since the updated Lagrangian description is employed, the current position of each node of the finite
element must be updated by

pi(t + ∆t) = pi(t) + vi(t), (10.210)

where p(t) and u(t) are the current position and the velocity (incremental displacement) of each node respectively.

(2) Matrix Forms of Incremental Internal Virtual Work

Defining a matrix form of the velocity gradient components by

1 2 3 4 5 6 7 8 9{
∇v

}
≡

⌊
v1,1 v2,2 v3,3 v3,2 v2,3 v1,3 v3,1 v2,1 v1,2

⌋t , (10.211)

and remembering the conjugateness expressed in the incremental internal virtual work Eq.(10.161), we must define
a matrix form of the corresponding nominal stress rate vector components by

1 2 3 4 5 6 7 8 9{
ṅ
}
≡

⌊
ṅ11 ṅ22 ṅ33 ṅ23 ṅ32 ṅ31 ṅ13 ṅ12 ṅ21

⌋t . (10.212)

It should be noted that the orders of the shearing components of the latter matrix are different from those of the
former matrix. Then, the incremental internal virtual work can be expressed by

δU(t) ≡
∫
v

δvi, j ṅ ji dv =
∫
v

δ
{
∇v

}t {
ṅ
}

dv,

where v defines the current domain of the body.
Since the velocity gradient can be related to the velocity in the matrix form by{

∇v
}
=

(
S

) {
v
}
,

{
v
}
≡

⌊
v1 v2 v3

⌋t
, (10.213a, b)

(
S

)
≡



∂

∂x1
0 0 0 0

∂

∂x3
0 0

∂

∂x2

0
∂

∂x2
0 0

∂

∂x3
0 0

∂

∂x1
0

0 0
∂

∂x3

∂

∂x2
0 0

∂

∂x1
0 0



t

, (10.213c)

the incremental internal virtual work is rewritten as

δU(t) =
∫
v

δ
{
v
}t (

S
)t {

ṅ
}

dv.

Also, the hypoelasticity is formally expressed by

ṅi j = Fi jkl vk,l →
{

ṅ
}
=

(
F

) {
∇v

}
, (10.214)

where the coefficient F is generally a function of the stress. Eventually, the incremental internal virtual work is
evaluated by

δU(t) =
∫
v

δ
{
v
}t (

S
)t (

F
) (

S
) {
v
}

dv. (10.215)
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(3) Matrix Forms of Hypoelasticity

Stress Increments: Define the Cauchy stress increment vector by

1 2 3 4 5 6{
σ̇

}
≡

⌊
σ̇11 σ̇22 σ̇33 σ̇23 σ̇31 σ̇12

⌋t
, (10.216)

and, the relation between the stress increment and the velocity gradient can be expressed by the matrix form as{
σ̇

}
=

(
G

) {
∇v

}
. (10.217)

Note that the matrix
(

G
)

is not square but has its size of 6 × 9.

Model with Jaumann Rate of Cauchy Stress: When the hypoelastic model in terms of the Jaumann rate of the
Cauchy stress is employed as has been defined by Eq.(10.151), the stress increment is given by

σ̇i j = 2µ di j + λ δi j dkk + wik σk j + w jk σki,

and, therefore, the explicit representation of the matrix
(

G
)

in Eq.(10.217) is obtained as

(
G

)
≡



λ + 2µ λ λ 0 0
λ λ + 2µ λ −σ23 σ23
λ λ λ + 2µ σ23 −σ23

0 0 0 µ − 1
2σ33 +

1
2σ22 µ + 1

2σ33 − 1
2σ22

0 0 0 1
2σ12 − 1

2σ12

0 0 0 − 1
2σ13

1
2σ13

σ13 −σ13 −σ12 σ12
0 0 σ12 −σ12
−σ13 σ13 0 0
− 1

2σ12
1
2σ12

1
2σ13 − 1

2σ13

µ − 1
2σ11 +

1
2σ33 µ + 1

2σ11 − 1
2σ33 − 1

2σ23
1
2σ23

1
2σ23 − 1

2σ23 µ − 1
2σ22 +

1
2σ11 µ + 1

2σ22 − 1
2σ11


. (10.218)

Also, since the constitutive equation in terms of the nominal stress rate can be defined by

ṅi j = 2µ di j + λ δi j dkk + σi j dkk + w jk σki − dik σk j,

the matrix
(

F
)

in Eq.(10.214) is obtained as

(
F

)
≡



λ + 2µ λ + σ11 λ + σ11 0 0
λ + σ22 λ + 2µ λ + σ22 −σ23 0
λ + σ33 λ + σ33 λ + 2µ 0 −σ23

σ23 0 σ23 µ − 1
2σ33 +

1
2σ22 µ − 1

2σ33 − 1
2σ22

σ23 σ23 0 µ − 1
2σ33 − 1

2σ22 µ + 1
2σ33 − 1

2σ22

σ13 σ13 0 − 1
2σ12 − 1

2σ12

0 σ13 σ13
1
2σ12 − 1

2σ12

0 σ12 σ12 − 1
2σ13

1
2σ13

σ12 0 σ12 − 1
2σ13 − 1

2σ13

0 −σ13 −σ12 0
0 0 0 −σ12
−σ13 0 0 0
− 1

2σ12
1
2σ12 − 1

2σ13 − 1
2σ13

− 1
2σ12 − 1

2σ12
1
2σ13 − 1

2σ13

µ − 1
2σ11 +

1
2σ33 µ − 1

2σ11 − 1
2σ33 − 1

2σ23
1
2σ23

µ − 1
2σ11 − 1

2σ33 µ + 1
2σ11 − 1

2σ33 − 1
2σ23 − 1

2σ23

− 1
2σ23 − 1

2σ23 µ − 1
2σ22 +

1
2σ11 µ − 1

2σ22 − 1
2σ11

1
2σ23 − 1

2σ23 µ − 1
2σ22 − 1

2σ11 µ + 1
2σ22 − 1

2σ11


. (10.219)

However, it should be noted that this matrix is non-symmetric with its size of 9 × 9.
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Model with Truesdell Stress Rate: On the other hand, when the Truesdell stress rate is employed to define the
hypoelasticity as Eq.(10.154), we have

σ̇i j = 2µ di j + λ δi j dkk − σi j dkk + vi,k σk j + v j,k σki,

and, the coefficient matrix
(

G
)

in Eq.(10.217) is given by

(
G

)
≡ (10.220)

λ + 2µ + σ11 λ − σ11 λ − σ11 0 0 2σ13 0 0 2σ12
λ − σ22 λ + 2µ + σ22 λ − σ22 0 2σ23 0 0 2σ12 0
λ − σ33 λ − σ33 λ + 2µ + σ33 2σ23 0 0 2σ13 0 0
−σ23 0 0 µ + σ22 µ + σ33 0 σ12 σ13 0

0 −σ13 0 σ12 0 µ + σ33 µ + σ11 0 σ23
0 0 −σ12 0 σ13 σ23 0 µ + σ11 µ + σ22


.

Since the constitutive equation in terms of the nominal stress rate is written by

ṅi j =
{
µ

(
δik δ jl + δil δ jk

)
+ λ δi j δkl + σli δ jk

}
vk,l = Fi jkl vk,l → Fi jkl = Flk ji,

the matrix
(

F
)

in Eq.(10.214) becomes symmetric as

(
F

)
≡ (10.221)

λ + 2µ + σ11 λ λ 0 0 σ13 0 0 σ12
λ λ + 2µ + σ22 λ 0 σ23 0 0 σ12 0
λ λ λ + 2µ + σ33 σ23 0 0 σ13 0 0
0 0 σ23 µ + σ22 µ 0 σ12 0 0
0 σ23 0 µ µ + σ33 0 0 σ13 0
σ13 0 0 0 0 µ + σ33 µ 0 σ23
0 0 σ13 σ12 0 µ µ + σ11 0 0
0 σ12 0 0 σ13 0 0 µ + σ11 µ
σ12 0 0 0 0 σ23 0 µ µ + σ22


.

Incidentally, when the hypoelasticity is defined by the Jaumann rate of the Kirchhoff stress as in Eq.(10.156), the
corresponding matrix F also becomes symmetric.

Therefore, in the sense of the updated Lagrangian approach, since this tangential model using the Truesdell
stress rate has an instantaneous weak form in the current configuration defined by

δΠ(t) ≡
∫
v(t)
δ
{
∇v

}t (
F(t)

) {
∇v

}
dv −

∫
v(t)
δ
{
v
}t {

π̇
}
ρ dv −

∫
s(t)
δ
{
v
}t {

ṫ
}

ds = 0,

which can be formally integrated to obtain the corresponding functional Π(t) as

Π(t) ≡ 1
2

∫
v(t)

{
∇v

}t (
F(t)

) {
∇v

}
dv −

∫
v(t)

{
v
}t {

π̇
}
ρ dv −

∫
s(t)

{
v
}t {

ṫ
}

ds,

because the matrix
(

F
)

is symmetric. In the case of the hypoelasticity with the Jaumann rate of the Cauchy
stress, of course, the corresponding weak form, δΠ, is not integrable.

(4) Standard Discretization

The standard procedure of the finite element method is then followed, and we start with approximation of the
velocity field in one element by some appropriate piecewise polynomials N(x1, x2, x3) as{

v
}
=

(
N(x1, x2, x3)

) {
ṗ
}
, (10.222)
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where
{

ṗ
}

is a certain properly chosen nodal velocity vector depending on the choice of the polynomials. Re-
membering that the nodal coordinates must be updated step by step by Eq.(10.210), we here simply choose the
four-node tetrahedron element in order to keep the compatibility of the adjacent elements. Then, by Eqs.(10.213a)
and (10.217), the incremental stress can be expressed by{

σ̇
}
=

(
G

) (
S

) (
N

) {
ṗ
}
=

(
G

) (
B

) {
ṗ
}
,

(
B

)
≡

(
S

) (
N

)
. (10.223a, b)

Eventually, through the incremental internal virtual work Eq.(10.215), the tangent stiffness matrix can be defined
by (

k
)
=

∫
v

(
N

)t (
S

)t (
F

) (
S

) (
N

)
dv =

∫
v

(
B

)t (
F

) (
B

)
dv. (10.224)

As has been noted before, this tangent stiffness matrix becomes symmetric when the Truesdell stress rate is em-

ployed in the hypoelasticity. Since the four-node tetrahedron element is chosen, the matrix
(

B
)

in Eq.(10.223b)
becomes constant, so that it is easy to update the nodal coordinates and the stresses.

The increments of the body force and the surface force are also discretized by the standard process as{
ḣ
}
≡

∫
v

(
N

)t {
π̇
}
ρ dv,

{
ḟ
}
≡

∫
s

(
N

)t {
ṫ
}

ds. (10.225a, b)

Finally, the incremental (tangent) stiffness equation can be obtained through the incremental virtual work equation
as (

k
) {

ṗ
}
=

{
ḣ
}
+

{
ḟ
}
, (10.226)

and, it is simply solved step by step. As has been explained before, the current coordinates of all the nodes
{

p
}

can be updated by Eq.(10.210) as {
p
}(t+∆t)

=

{
p
}(t)
+

{
ṗ
}(t)
. (10.227)

Also, the nodal forces are calculated by{
h
}(t+∆t)

=

{
h
}(t)
+

{
ḣ
}(t)
,

{
f
}(t+∆t)

=

{
f
}(t)
+

{
ḟ
}(t)
. (10.228a, b)

Similarly, define the Cauchy stress vector by

1 2 3 4 5 6{
σ

}
≡

⌊
σ11 σ22 σ33 σ23 σ31 σ12

⌋t
, (10.229)

and Eq.(10.209) makes it possible to update this stress vector by{
σ

}(t+∆t)
=

{
σ

}(t)
+

{
σ̇

}(t)
. (10.230)

(5) Matrix Forms of Elastoplastic Tangential Models

Effective Stress and Effective Plastic Strain: In order to install the Prandtle-Reuss model, the deviatoric stress
components are defined by a 6 × 1 vector as

1 2 3 4 5 6{
σ′

}
≡

⌊
σ′11 σ′22 σ′33 σ23 σ31 σ12

⌋t , (10.231)

and, at the same time, a 9 × 1 vector is defined by

1 2 3 4 5 6 7 8 9{
s
}
≡

⌊
σ′11 σ′22 σ′33 σ23 σ23 σ13 σ13 σ12 σ12

⌋t . (10.232)

Then, these two vectors are related to the stress vector by

{
σ′

}
=

(
R

) {
σ

}
=


2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


{
σ

}
, (10.233)
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and

{
s
}
=

(
T

) {
σ

}
=



2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1


{
σ

}
. (10.234)

Using this vector, we can define the effective stress (squared) by

σ2 ≡ 1
2
σ′i j σ

′
i j =

1
2

{
s
}t {

s
}
. (10.235)

Also, the effective plastic strain increment can be given by the material derivative of Eq.(10.167b) as

ϵ̇
p ≡

√
2 dp

i j dp
i j =

1
2H σ

σ′kl σ̇kl =
1

2H σ
σ′kl σ̇

′
kl =

1
2H σ

{
s
}t {

ṡ
}
, (10.236)

which is accumulated step by step to evaluate the effective plastic strain. The deviatoric stress increment can be
calculated by {

ṡ
}
=

(
T

) {
σ̇

}
=

(
T

) (
G

) (
S

) (
N

) {
ṗ
}
=

(
T

) (
G

) (
B

) {
ṗ
}
. (10.237)

Tangential Elastoplastic Stiffnesses: Eventually, the elastoplastic stiffness equation can be written as{
σ̇

}
=

((
G

)
−

(
Gp

)) {
∇v

}
, (10.238)

in terms of the stress rate and the velocity gradient, where the matrix
(

Gp
)

is the plastic part defined later on. On
the other hand, the tangential equation in terms of the nominal stress rate can be expressed as{

ṅ
}
=

((
F

)
−

(
Fp

)) {
∇v

}
, (10.239)

where the matrix
(

Fp
)

is the plastic part which will be also defined later on.

Hypoelastic Model with Jaumann Rate of Cauchy Stress: Since the incremental constitutive equation of
this model is given by

σ̇i j = 2µ di j + λ δi j dkk + wik σk j + w jk σki −
µ2

µ + H

σ′i j σ
′
kl

σ2 dkl,

the matrix
(

Gp
)

in Eq.(10.238) can be defined by

(
Gp

)
≡ µ2

(µ + H)σ2

{
σ′

} {
s
}t
. (10.240)

Also, since the corresponding incremental constitutive model in terms of the nominal stress rate is given by

ṅi j = 2µ di j + λ δi j dkk + σi j dkk + w jk σki − dik σk j −
µ2

µ + H

σ′i j σ
′
kl

σ2 dkl,

the matrix
(

Fp
)

in Eq.(10.239) is defined by

(
Fp

)
≡ µ2

(µ + H)σ2

{
s
} {

s
}t
. (10.241)

It should be noted that, although the tangent matrix
(

F
)

is not symmetric as has been shown in Sec. 10.5.3 (4),

the plastic part of the tangent matrix
(

Fp
)

is symmetric.
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Fig. 10.25 Uniaxial loading: comparison between numerical and analytical results of nominal stress and true stress

Hypoelastic Model with Truesdell Stress Rate: First, we define two more matrices one of which is a 1 × 9
vector by

1 2 3 4 5 6 7 8 9⌊
P

⌋
≡

⌊
1 1 1 0 0 0 0 0 0

⌋
, (10.242)

and another one is defined by

1 2 3 4 5 6 7 8 9⌊
Q

⌋
≡

⌊
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

⌋
, (10.243)

where

Q1 ≡ σ11 σ
′
11 + σ

2
12 + σ

2
13, Q2 ≡ σ2

12 + σ22 σ
′
22 + σ

2
23, Q3 ≡ σ2

13 + σ
2
23 + σ33 σ

′
33,(10.244a, b, c)

Q4 ≡ σ12 σ13 + σ23 σ22 + σ23 σ
′
33, Q5 ≡ σ12 σ13 + σ23 σ

′
22 + σ23 σ33, (10.244d, e)

Q6 ≡ σ13 σ
′
11 + σ12 σ23 + σ13 σ33, Q7 ≡ σ13 σ11 + σ12 σ23 + σ13 σ

′
33, (10.244f, g)

Q8 ≡ σ12 σ11 + σ12 σ
′
22 + σ13 σ23, Q9 ≡ σ12 σ

′
11 + σ12 σ22 + σ13 σ23. (10.244h, i)

Then, since the constitutive law in terms of the stress rate is given by

σ̇i j = 2µ di j + λ δi j dkk − σi j dkk + vi,k σk j + v j,k σki

− µ2

µ + H

σ′i j σ
′
kl

σ2 dkl −
µ

2 (µ + H)

σ′i j σ
′
kl

σ2

(
vk,m σml + vl,m σmk

)
+

µ

µ + H
σ′i j dkk,

the matrix
(

Gp
)

in Eq.(10.238) can be defined by

(
Gp

)
≡ µ2

(µ + H)σ2

{
σ′

} {
s
}t
+

µ

(µ + H)σ2

{
σ′

} ⌊
Q

⌋
− µ

µ + H

{
σ′

} ⌊
P

⌋
. (10.245)

Similarly, since the constitutive law in terms of the nominal stress rate is written as

ṅi j = 2µ di j + λ dkk + σki v j,k

− µ2

µ + H

σ′i j σ
′
kl

σ2 dkl −
µ

2 (µ + H)

σ′i j σ
′
kl

σ2

(
vk,m σml + vl,m σmk

)
+

µ

µ + H
σ′i j dkk,

the matrix
(

Fp
)

in Eq.(10.239) can be defined by

(
Fp

)
≡ µ2

(µ + H)σ2

{
s
} {

s
}t
+

µ

(µ + H)σ2

{
s
} ⌊

Q
⌋
− µ

µ + H

{
s
} ⌊

P
⌋
. (10.246)

In this model, the plastic part of the stiffness matrix
(

Fp
)

becomes non-symmetric.
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10.7.2 Uniaxial Loading of Elastic Body

x3
x1

x2

A B
Fig. 10.26 Finite element

In order to check accuracy of the numerical models above, a simple uniaxial loading
of an elastic body is examined, and the results are compared with the corresponding
analytical solutions in Fig. 10.25. A very soft material is chosen to make the total
deformation large enough; i.e. we set E = 10 MN/m2 and ν = 1/3. Therefore, we
have C0 ≡ λ + 2µ = 15 MN/m2, C1 ≡ λ = 7.5 MN/m2, and µ = 3.75 MN/m2.
The body analyzed is a cube shown in Fig. 10.26, the length of sides of which is
set at 1 m. On the bottom surface, all the nodes are fixed to the x2-direction, and a
node at the center is fixed to the x1- and x3-directions. Also, the node A is fixed to
the x1-direction, and the node B is fixed to the x3-direction. Loading is applied by
specifying displacement of the upper surface to the x2-direction by 1 m or −0.5 m. In order to keep the deformation
symmetric, a symmetric pattern of division of finite elements is chosen, and the total number of the elements is 35
with 96 nodes.

Table 10.1 Numerical errors of R

model-steps ΛL = 0.5 ΛL = 2.0

Jaumann-20 −4.84 × 10−2 +3.80 × 10−2

J-200 −5.01 × 10−3 +3.69 × 10−3

J-2000 −5.02 × 10−4 +3.68 × 10−4

J-20000 −5.03 × 10−5 +3.68 × 10−5

Truesdell-20 −2.31 × 10−2 −3.63 × 10−3

T-200 −2.39 × 10−3 −4.34 × 10−4

T-2000 −2.40 × 10−4 −4.41 × 10−5

T-20000 −2.40 × 10−5 −4.43 × 10−6

Solid curves in Fig. 10.25 represent the response in
Eq.(10.154) of the model using the Truesdell stress rate,
while dashed curves show Eq.(10.151) of the model using
the Jaumann rate of the Cauchy stress. Open circles are the
numerical results of the two models using 20 loading steps
up to the final state of deformation. Also, two symbols
× and + are the results using 20000 steps. The nominal
stress R to the x2-direction plotted on the ordinate of the
left figure is calculated by the sum of the reaction forces
of all the nodes on the upper surface. On the other hand,
Σ in the right figure is the Cauchy stress evaluated at the
integral point of the element. As far as these plots are
concerned by this scale of the figure, results are almost the
same no matter how many loading steps are used, and are
also almost coincident with the analytical solutions. The relative errors of the numerical solutions at the final
loading steps with ΛL = 0.5 or 2 are summarized in Table 10.1 with respect to the number of the loading steps. It
seems that only 200 (5 mm or 2.5 mm) steps are needed to achieve enough precision for the practical estimates.

10.7.3 Comparison of Constitutive Models

(1) Comparison of Elastic Buckling Loads

h

ℓ

x1

x3

O

Fig. 10.27 Finite element

Two different hypoelastic models above have different characteristics and can
be used to describe elastic responses of some two types of materials. However,
it is not easy to find an analytical solution of arbitrary boundary-value prob-
lems in the framework of the finite deformation. On the other hand, several
analytical solutions can be found in the field of structural mechanics in finite
displacements; e.g. the elastic buckling problems of structural members. In
the buckling analyses, as far as the critical loads are concerned, only the incre-
mental (tangential) analyses of the finite displacement theory are necessary.
Therefore, the tangent stiffness equations formulated in the previous sections
can be directly used to find such bifurcation points. Namely, the buckling
state can be determined at a certain deformed state when the tangent stiffness

matrix
(

F
)

loses its positive-definiteness. Since the two typical buckling loads exists in the Timoshenko beam
theory depending on the choice of the shearing constitutive laws, very short columns subjected to the compressive
axial load are examined here. Fig. 10.27 shows a 3-dimensional pattern of the finite element of such short columns,
the axis of which lies to the x1-direction. The Young modulus and the Poisson ratio are the same as those in the
previous example. The height of the column is kept at h = 16 cm and its thickness t to the x2-direction is 5 mm,
while the length of the columns ℓ is between 10 cm and 40 cm. For example, when ℓ = 20 cm, the numbers of the
elements are 40 to the x1-direction and 32 to the x3-direction. Also, several nodes are introduced on the mid-plane
of the thickness resulting in totally 3,985 nodes and 15,360 elements. Other settings are explained in the reference
[92]. As a model of a cantilever beam-column, we set boundary conditions as follows; the origin at x1 = 0, x2 = 0
and x3 = 0 is fixed to all the directions, while all the nodes on the surface of x2 = 0 are fixed to the x2-direction
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in order to prevent the lateral buckling with respect to the weak axis. Also, all the nodes on the surface of x1 = 0
and x2 = t are fixed to the x1- and x3-directions, and the nodes except these nodes and the origin on the surface
of x1 = 0 are fixed to the x1-direction. The loading is specified at all the nodes on the surface at x1 = ℓ by the
uniformly distributed load to the negative direction of the x1-direction, and the total sum of this distributed loads
is denoted by P. The correction coefficient kt of the Timoshenko beam is estimated by Eq.(A.7b).

Fig. 10.28 shows the numerical results of relations between the buckling load Pcr and the slenderness ratio
λ. A symbol □ with an index J and a symbol ▽ with an index K indicate the solutions when the Jaumann rate
of the Cauchy stress and the Kirchhoff stress are chosen respectively. On the other hand, a symbol ◎ with an
index T represents the solutions when the Truesdell stress rate is employed, while a symbol △ with an index O
indicates those when the Oldroyd stress rate is used. The solid curve shows the analytical solutions of the model B
in Eq.(B.56) of the Timoshenko beam, while the dashed curve shows the solutions of the Model A in Eq.(B.59). As
a reference, the Euler buckling load of the Bernoulli-Euler beam is given by the dot-dashed curve. Except one case
explained later on, in these numerical calculations, uniform deformation is kept up to the buckling state, so that the
area A and the sectional moment of inertia I are evaluated from the shape of the cross-section at the buckling point.
But, the length ℓ is the initial size of the column, because the buckling formulae referred to above take into account
the shrinkage of the column due to compression. The two hypoelastic models with the Truesdell stress rate and
the Oldroyd stress rate predict the buckling state very close to those of the model B, which takes into account fully
the effect of shearing distortion between the beam axis and the cross-section. On the other hand, the solutions of
the two models using the Jaumann rate lie near the analytical predictions of the model A, which approximates the
effect of shear deformation to some extent. Incidentally, when the Jaumann rate is employed, two extremely short
columns18 with λ = 2 buckle once at the levels indexed by symbols Z and ×, but the stable states are suddenly
restored in the next loading step. After these states, the columns cannot keep uniform deformation any longer, and
again the positive-definiteness is lost at the levels given by symbols■ and▼.

The corresponding post-buckling behaviors of a short column with ℓ = 20 cm (λ ≃ 4) are illustrated in Fig.
10.29. The abscissa w expresses the displacement to the x3-direction (deflection) at x1 = ℓ, x2 = 0 and x3 = h/2. In
order to keep the behavior stable, we constraint the displacement to the x3-direction at x1 = 0, and we introduce
a small initial imperfection the precise definition of which is given in the reference [92]. A thick dashed curve
represents the result when the Jaumann rate of the Cauchy stress is used, while a thick solid curve shows the
result when the Truesdell stress rate is employed. Analytical solutions are calculated by the finite element models
explained in Sec. B.6.2. A thin solid curve expresses the post-buckling behavior of the model B, and a thin dot-
dashed curve shows that of the model A. Again, the hypoelastic model using the Truesdell stress rate traces more or
less the same post-buckling path as that of the model B. These comparisons with two distinct shearing constitutive
models of the Timoshenko beam theory may suggest

• Jaumann rate may be appropriate to use for the constitutive models of materials having rather stiff shearing
resistant such as crystalline metals.

18 We may not be able to call such a short body as a column. And, it should be noted that the column shrinks about 25% at the buckling.
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• Materials with relatively softer shearing resistant can be modeled by the hypoelasticity using the Truesdell
stress rate.

(2) Elastoplastic Simulation of Standard Element Tests

We here try to observe19 numerically the elastoplastic behavior and the localization of deformation in the standard
element tests. Comparisons are made between results of the two hypoelastic models which use either the Truesdell
stress rate or the Jaumann rate of the Cauchy stress. A simple step-by-step incremental calculation without any
iterative scheme is repeated, so that the loading/unloading condition is checked at each step. The region to be
analyzed is similar to that in Fig. 10.27, and two types of dimensions are employed as follows:

almost square shape: The height h = 16 cm is divided into 16 elements, and the length ℓ = 20 cm is divided into
20 elements. The mid-plane of the thickness t = 1 cm have several nodes resulting in totally 3,840 elements
with 1,034 nodes. This region is hereafter called the ‘square-plate’.

rectangular shape: This is a half region of the square-plate above; the height h = 8 cm is divided into 32 elements,
and the length ℓ = 20 cm is divided into 40 elements. The mid-plane of the thickness t = 5 mm have several
nodes resulting in totally 7,680 elements with 2,034 nodes. This region is hereafter called the ‘slender-plate’.

As a model of the steel materials, the Young modulus is set at E = 200 GN/m2, and the Poisson ratio is ν = 1/3. The
initial yield shear stress is specified by τy = 140 MN/m2 with the hardening coefficient H = 0.25 MN/m2 which is
smaller than the standard settings in order to accelerate non-homogeneous development of deformation.

The boundary conditions on the two ends at x1 = 0 and x1 = ℓ are the same20 as those in the previous example,
but the load is applied by specifying the displacement of one end. Other boundary conditions on the surfaces at
x2 = 0 and x2 = t are set as follows:

The plane strain state can be approximately realized by constraining the displacements to the x2-direction on
both planes.

The plane stress condition can be approximately satisfied by making both planes free surfaces. Knowing that the
plane stress state cannot be rigorously achieved by any experiments, we choose this setting which represents
the situation of very thin plates. In the following numerical calculations, the magnitude of |σ22| is at most in
the order of 10−6 times |σ11| as far as the deformation is almost uniform.

Furthermore, in order to trigger some non-uniform deformation, the following initial imperfections are introduced:

one-sided imperfection: The thickness near one corner of the loading edge is made small by changing the x2-
component of the coordinates of the node at x1 = ℓ, x2 = t and x3 = h and its adjacent node at x3 = h by
20%. Its abbreviation is ‘one-sided’.

both-sided imperfection: The thickness near both corners of the loading edge is made small. The x2-component
of the coordinates of the node at x1 = ℓ, x2 = t and x3 = 0 and its adjacent node is also made small by 20%
in addition to the one-sided imperfection above. Its abbreviation is ‘both-sided’.

diagonal imperfection: The thickness near the central section of the opposite side is made small by 20% in
addition to the one-sided imperfection above. The x2-component of the node x1 = ℓ/2, x2 = t and x3 = 0 and
its adjacent node at x3 = 0 is made small. Its abbreviation is ‘diagonal’.

Deformation history will be visualized by relations between the nominal stress σn and the engineering (exten-
sional) strain ϵ defined by

σn ≡
P
ht
, ϵ ≡ U

ℓ
, (10.247a, b)

where P is the sum of the reaction forces of all the nodes on the right end surface to the x1-direction; and U
represents the given displacement to the x1-direction of the same nodes. The number of negative diagonal elements
of the tangent stiffness matrix after the LU decomposition is denoted by nd in order to check the stability of the
state. The following colors are used in the contour expressions of the distribution of the effective (accumulated)
plastic strain ϵ̄p.

Minimum Maximum

Unless otherwise stated, the results using the Truesdell stress rate are shown.
19 The post-processor Femap (Copyright c⃝ 2012 Siemens Product Lifecycle Management Software Inc., Version 10.3.1-Japanese language)

licensed to our laboratory has been used.
20 The node at x1 = 0 and x3 = h/2 is not fixed, because the non-symmetry to the x3-direction can yield some effects of initial imperfection.
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Fig. 10.30 Near peaks of nominal stress in plane strain state
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Fig. 10.31 Post peaks of nominal stress in plane strain state

Plane Strain Tension: The deformation states of the specimen without initial imperfection near the peak of the
nominal stress are shown in Fig. 10.30. Near ϵ = 0.3%, a small stress concentration develops near the fixed end,
but some periodical deformations dominate afterwards. The periods seem to be first determined by h, and gradually
become small. The number of the negative diagonal elements of the tangent stiffness matrix, nd, becomes non-zero
near this peak and changes according to the change of the pattern of periodicity.

The post-peak states are depicted in Fig. 10.31, where periodical patterns are gradually replaced by several
straight stress concentration bands to the 45-degree orientation from the tensile axis. These bands may not be the
localized slip bands evaluated by the criterion of the loss of ellipticity in Eq.(10.206) but correspond to the full de-
velopment of periodical concentration. After the peak, nd returns to zero, and the patterns of concentration become
similar to the localized bands frequently observed in many experiments. Finally, at ϵ = 2.5%, the global appear-
ances of the specimen shown in the right-most figures indicate the necking deduced by the localized deformation.
The well-known analytical research [30] states that the diffusive (periodical) deformation precedes the localized
deformation given by Eq.(10.206), and the present numerical results confirm these analytical predictions. Inciden-
tally, the effective plastic strain becomes significantly large because the hardening parameter H is set relatively
small.

On the other hand, Fig. 10.32 illustrates results of another hypoelastic model using the Jaumann rate of the
Cauchy stress. It is quite interesting that the periodical pattern of Fig. 10.32 (f) differs from that at the previous
step in Fig. 10.32 (e) and that in Fig. 10.30 (h) for the Truesdell case. Moreover, nd’s are larger than those in
the Truesdell case, suggesting that the period of the pattern is relatively small in the Jaumann-rate case. These
differences seem to result from the difference of the shear resistance between the two hypoelastic models.

The initial yield stress in this plane strain state is σy = 2τy = 280 MN/m2 given by Eq.(9.155) as is clear from
the stress-strain relation in Fig. 10.33. The hardening parameter is so small that the macroscopic softening occurs,
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(a) ϵ = 0.389%, ϵ̄p
max = 0.545%,

ϵ̄
p
min = 0.518%, nd = 3

(b) ϵ = 0.398%, ϵ̄p
max = 0.725%,

ϵ̄
p
min = 0.518%, nd = 2

(c) ϵ = 2.50%, ϵ̄
p
max = 32.8%,

ϵ̄
p
min = 0.518%, nd = 0

(d) ϵ = 2.50%, ϵ̄
p
max = 32.8%,

ϵ̄
p
min = 0.518%, nd = 0

(e) ϵ = 0.389%, ϵ̄p
max = 0.541%,

ϵ̄
p
min = 0.523%, nd = 5

(f) ϵ = 0.423%, ϵ̄p
max = 0.659%,

ϵ̄
p
min = 0.563%, nd = 3

(g) ϵ = 2.50%, ϵ̄
p
max = 42.7%,

ϵ̄
p
min = 0.575%, nd = 0

(h) ϵ = 2.50%, ϵ̄
p
max = 42.7%,

ϵ̄
p
min = 0.575%, nd = 0

Fig. 10.32 Plane strain state using Jaumann rate of Cauchy stress
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Fig. 10.33 Tension in plane strain state

but no bifurcation path is observed. In the case of the slender plate, to some extent, some difference emerges
between the responses of the two hypoelastic models near ϵ = 1%. At more larger deformation near ϵ = 2%,
the Truesdell model shows a single localized deformation only at the right edge as is shown in Fig. 10.31 (g), but
Fig. 10.32 (g) of the Jaumann model shows one localization at the center. When this region analyzed is treated as
a unit cell, the period of the localization is about 2ℓ for the Truesdell model, while it is about ℓ for the Jaumann
model possibly resulting from the difference of the shear resistance of the two models. Although the response by
the Truesdell model becomes softer than that by the Jaumann model in this plane strain case, the former becomes
stiffer than the latter in the plane stress case explained later on.

The responses of the specimens with three types of initial imperfection are also depicted in Fig. 10.33. No
matter which the imperfection is, the corresponding stress concentration makes the initial yielding earlier than that
of the straight case. Especially, in the case of square plates, no negative diagonal element of the tangent stiffness
matrix appears. Accordingly, no periodical deformation can be observed before the isolated localized deformation
becomes clear, possibly because the initial imperfections suppress development of the periodical deformation. On
the other hand, the slender plate experiences nd = 1 near ϵ ≃ 0.4% right after the peak only when the both-
sided imperfection is given, but nd = 0 when the other imperfections are specified. The corresponding patterns of
deformation are shown in Figs. 10.34∼10.36. Only in the case of both-sided imperfection, we have nd = 1 because
the periodical deformation appears in a small region near the imperfection. Eventually, the deformation patterns at
ϵ = 2.5% are almost the same as those of the straight specimens, while the maximum values of the effective plastic
strain become quite large.
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(a) ϵ = 0.164%, ϵ̄p
max = 0.110%,

ϵ̄
p
min = 0.0938%, nd = 0

(b) ϵ = 0.248%, ϵ̄p
max = 0.292%,

ϵ̄
p
min = 0.254%, nd = 0

(c) ϵ = 0.331%, ϵ̄
p
max = 2.62%,

ϵ̄
p
min = 0.303%, nd = 0

(d) ϵ = 2.50%, ϵ̄
p
max = 71.0%,

ϵ̄
p
min = 0.303%, nd = 0

Fig. 10.34 with one-sided initial imperfection

(a) ϵ = 0.165%, ϵ̄p
max = 0.111%,

ϵ̄
p
min = 0.0938%, nd = 0

(b) ϵ = 0.281%, ϵ̄p
max = 0.399%,

ϵ̄
p
min = 0.300%, nd = 0

(c) ϵ = 0.373%, ϵ̄
p
max = 2.24%,

ϵ̄
p
min = 0.300%, nd = 1

(d) ϵ = 2.50%, ϵ̄
p
max = 59.8%,

ϵ̄
p
min = 0.300%, nd = 0

Fig. 10.35 with both-sided initial imperfection

(a) ϵ = 0.141%, ϵ̄p
max=0.0635%,

ϵ̄
p
min = 0.0465%, nd = 0

(b) ϵ = 0.250%, ϵ̄p
max = 0.334%,

ϵ̄
p
min = 0.210%, nd = 0

(c) ϵ = 0.291%, ϵ̄p
max = 0.788%,

ϵ̄
p
min = 0.214%, nd = 0

(d) ϵ = 2.50%, ϵ̄
p
max = 73.0%,

ϵ̄
p
min = 0.214%, nd = 0

Fig. 10.36 with diagonal initial imperfection
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Fig. 10.37 Compression in plane strain state

Plane Strain Compression: The same specimens are compressed by reversing the direction of the applied dis-
placement on the right edge. The global resistance characteristics are shown in Fig. 10.37 revealing that the
softenings are not so significant in comparison with the tensile cases. The periodical patterns of deformation also
appear as is shown in Fig. 10.38, but the periods do not change in this case of the Truesdell model. The number of
the negative diagonal elements of the tangent stiffness matrix is kept zero for the square plate, although the slender
plate experiences nd = 1 in the states of periodical deformation. Eventually, at ϵ = 2.5%, clear isolated localized
deformations develop and the neckings are observed.

Fig. 10.39 shows the distribution of the effective plastic strain in the slender plate when the Jaumann rate of
the Cauchy stress is employed. Just like those in the previous case of tensile action, several different patterns
of the periodical deformation develop following the loading steps, but the difference between the maximum and
minimum effective plastic strains does not become so large. As is clear from comparison between Fig. 10.38 (g)
and Fig. 10.39 (d), the period is smaller than that of the Truesdell model. Hence, nd becomes large for the Jaumann
model. Furthermore, near ϵ = 2.5%, many isolated localized deformations develop. These are supposed to be
results from the difference of the shearing constitutive characteristics of the two hypoelastic models. Although the
macroscopic stress-strain behaviors are more or less the same, it is interesting that the microscopic deformation
patterns become different,
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(a) ϵ=−0.322%, ϵ̄p
max=0.401%,

ϵ̄
p
min = 0.393%, nd = 0

(b) ϵ=−0.331%, ϵ̄p
max=0.469%,

ϵ̄
p
min = 0.393%, nd = 0

(c) ϵ=−0.372%, ϵ̄
p
max=1.08%,

ϵ̄
p
min = 0.393%, nd = 0

(d) ϵ=−2.50%, ϵ̄
p
max=38.1%,

ϵ̄
p
min = 0.393%, nd = 0

(e) ϵ=−0.322%, ϵ̄p
max=0.400%,

ϵ̄
p
min = 0.394%, nd = 1

(f) ϵ=−0.331%, ϵ̄p
max=0.445%,

ϵ̄
p
min = 0.394%, nd = 1

(g) ϵ=−0.372%, ϵ̄p
max = 4.96%,

ϵ̄
p
min = 0.396%, nd = 0

(h) ϵ = −2.50%, ϵ̄p
max = 58.5%,

ϵ̄
p
min = 0.429%, nd = 0

Fig. 10.38 Compression in plane strain state

(a) ϵ=−0.322%, ϵ̄p
max=0.401%,

ϵ̄
p
min = 0.395%, nd = 1

(b) ϵ=−0.339%, ϵ̄p
max=0.435%,

ϵ̄
p
min = 0.428%, nd = 2

(c) ϵ=−0.347%, ϵ̄p
max=0.475%,

ϵ̄
p
min = 0.434%, nd = 3

(d) ϵ=−0.372%, ϵ̄p
max=0.669%,

ϵ̄
p
min = 0.434%, nd = 2

(e) ϵ = −0.555%, ϵ̄p
max = 4.02%,

ϵ̄
p
min = 0.434%, nd = 2

(f) ϵ = −0.940%, ϵ̄p
max = 20.6%,

ϵ̄
p
min = 0.434%, nd = 1

(g) ϵ = −1.58%, ϵ̄p
max = 20.8%,

ϵ̄
p
min = 0.439%, nd = 0

(h) ϵ = −2.50%, ϵ̄p
max = 24.9%,

ϵ̄
p
min = 0.439%, nd = 0

Fig. 10.39 Compression in plane strain state using Jaumann rate of Cauchy stress

(a) ϵ = 2.33%, ϵ̄
p
max = 3.80%,

ϵ̄
p
min = 3.79%, nd = 1

(b) ϵ = 5.00%, ϵ̄
p
max = 8.26%,

ϵ̄
p
min = 8.26%, nd = 1

Fig. 10.40 Straight cubic plate in plane stress state

Plane Stress Tension: One of the standard tensile
tests can be simulated by a plate under the plane stress
state. The development of the plastic deformation in
the square plate is depicted in Fig. 10.40, where no
necking occurs and the deformation is almost uniform
up to ϵ = 5% with small amount of periodical deforma-
tion. So is the case of another hypoelastic model with
the Jaumann rate of the Cauchy stress. The necking
and the periodical deformation become notable near
ϵ = 15% for the Truesdell model and near ϵ = 20%
for the Jaumann model. However, unlike the slender
plates explained below, the magnitude of the periodical deformation remains small, and the necking becomes
visible under much larger deformation.

On the other hand, as can be seen in Figs. 10.41 and 10.42 for the slender plates, the periodical deformations
become significant only to the x1-direction, and the localized large deformation and the necking can be visible near
ϵ = 5%. However, any isolated bands of localized deformation cannot emerge, so that the necking occurs not by
the shear band but by some Poisson’s effect of the global deformation. The global stress-strain relations are given
in Fig. 10.43. Since the plane stress state is one special type of the three-dimensional states, the initial yielding
occurs at σy =

√
3 τy = 242 MN/m2 by Eq.(9.28). Unlike the plane strain state, right after the peak at the initial

yielding, the softening occurs. The Truesdell model experiences large deformation near the center of the specimen
at about ϵ = 5%. Again, treating this region a unit cell, we consider that the period of large deformation is about ℓ
to the x1-direction. When the Jaumann model is employed, the large deformation develops near the loading (right)
edge, and the period may be considered to be about 2ℓ. This difference of the periodical deformation between the
two hypoelastic models may be caused by the difference of the global deformation after ϵ = 4% in Fig. 10.43.

The effects of the initial imperfections are significant as can be seen in Fig. 10.44. For example, the both-sided
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(a) ϵ = 2.25%, ϵ̄
p
max = 3.65%,

ϵ̄
p
min = 3.65%, nd = 2

(b) ϵ = 4.25%, ϵ̄
p
max = 7.39%,

ϵ̄
p
min = 6.68%, nd = 0

(c) ϵ = 5.00%, ϵ̄
p
max = 12.2%,

ϵ̄
p
min = 6.68%, nd = 0

(d) ϵ = 5.00%, ϵ̄
p
max = 12.2%,

ϵ̄
p
min = 6.68%, nd = 0

Fig. 10.41 Tension of model using Truesdell stress rate

(a) ϵ = 2.25%, ϵ̄
p
max = 3.65%,

ϵ̄
p
min = 3.64%, nd = 2

(b) ϵ = 4.25%, ϵ̄
p
max = 8.36%,

ϵ̄
p
min = 6.65%, nd = 0

(c) ϵ = 5.00%, ϵ̄
p
max = 20.8%,

ϵ̄
p
min = 6.65%, nd = 0

(d) ϵ = 5.00%, ϵ̄
p
max = 20.8%,

ϵ̄
p
min = 6.65%, nd = 0

Fig. 10.42 Tension of model using Jaumann rate of Cauchy stress
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Fig. 10.43 Tension in plane stress state

(a) ϵ = 0.150%, ϵ̄p
max = 0.144%,

ϵ̄
p
min = 0.0375%, nd = 2, one-

sided

(b) ϵ = 5.00%, ϵ̄
p
max = 23.4%,

ϵ̄
p
min = 3.31%, nd = 0, one-sided

(c) ϵ=0.132%, ϵ̄p
max=0.0372%,

ϵ̄
p
min = 0.0204%, nd = 2, both-

sided

(d) ϵ = 5.00%, ϵ̄
p
max = 43.3%,

ϵ̄
p
min = 0.0324%, nd = 1, both-

sided

(e) ϵ=0.133%, ϵ̄p
max=0.0893%,

ϵ̄
p
min = 0.00%, nd = 0, diagonal

(f) ϵ = 5.00%, ϵ̄
p
max = 41.7%,

ϵ̄
p
min = 0.00%, nd = 0, diagonal

Fig. 10.44 Effect of initial imperfection

and diagonal cases undergo larger discrepancy between the maximum and minimum plastic deformations than the
one-sided case; see the captions of Fig. 10.44. However, no localized band of deformation appears, and the necking
simply represents the Poisson effect. Although the deformation patters are different from each other depending on
the locations of the initial imperfection, the global behaviors in Fig. 10.43 shows more or less the same paths.

Fig. 10.45 Average stress

Since Fig. 10.41 (c) at ϵ = 5% indicates that the effective plastic strain i.e. the
shearing deformation becomes very large especially near the center of the speci-
men where many dislocations and any kinds of defects are supposed to accumulate.
Then, we may ask how the average stress becomes in the same region. The distri-
bution of the corresponding average stress σave is given in Fig. 10.45 in which the
magnitude of the stress is greater than 85 MN/m2 in the red region and is smaller
than 75 MN/m2 in the purple region. Although the concentration is not significant at all, it can be expected that
the ductile fractures such as the void creation and coalescence may also develop near this central region of the
specimen.

No matter which hypoelastic model is employed, the global responses are more or less the same because the
elastic deformation is very small in comparison with the plastic strain. However, as is clear from the previous
several numerical simulations, the microscopic patterns of deformation become different depending on the choice
of the elasticity; i.e. the characteristics of the localized deformation and the concentration of deformation which
cause the ultimate fracture state vary to some extent, and are influenced by the elastic models.
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(3) How to predict Lüders Band?

In order to predict the orientation of the localized deformation in the perfectly-plastic body, Hill [29] used the
characteristic Eq.(9.173) which evaluates the directions ϕ of the two slip lines, say, α- and β-lines. This criterion
takes into account only the flow rule of the body and find the characteristic lines along which no volumetric
deformation undergoes. We here employ this criterion, but substitute the numerically calculated stresses to predict
the orientation of the shear bands. First, Eq.(9.173) can be modified in the framework of the finite deformation as
follows: for example, on the x1-x3 plane, we have

d11 cos2 ϕ + 2d13 sin ϕ cos ϕ + d13 sin2 ϕ = 0, d11 sin2 ϕ − 2d13 sin ϕ cos ϕ + d13 cos2 ϕ = 0, (10.248a, b)

and, furthermore, neglecting the elastic parts of deformation, we approximate the equation above as

dp
11 cos2 ϕ + 2dp

13 sin ϕ cos ϕ + dp
13 sin2 ϕ = 0, dp

11 sin2 ϕ − 2dp
13 sin ϕ cos ϕ + dp

13 cos2 ϕ = 0. (10.249a, b)

Substitution of the Prandtl-Reuss flow rule in Eq.(10.168) into this equation results in

σ′11 cos2 ϕ + 2σ′13 sin ϕ cos ϕ + σ′33 sin2 ϕ = 0, σ′11 sin2 ϕ − 2σ′13 sin ϕ cos ϕ + σ′33 cos2 ϕ = 0. (10.250a, b)

Substituting the numerically evaluated stress σ obtained in the previous numerical calculations into Eq.(10.250),
we obtain

x1-x3 plane: tan ϕ ≃ ±1.41,± 1
1.41

, x1-x2 plane: tan ϕ ≃ 0,±∞ (10.251a, b)

near the initial yielding in the plane-strain tensile states. If the value 1.41 is replaced by
√

2, this estimate coincides
with Hill’s prediction. However, after the plastic region develops fully in much larger deformation states, this
equation yields

x1-x3 plane: tan ϕ ≃ ±1, x1-x2 plane: tan ϕ = arbitrary, (10.252a, b)

i.e. the slip lines extend to the ±45 degrees from the tensile x1-direction at least on the x1-x3 plane. The same
results are obtained in the plane-strain compressed states. Therefore, on the x1-x3 plane in plane strain states, we
can conclude as follows:

• When the plastic deformation develops fully in the entire region, the α and β slip lines by the Hill criterion
extend to ±45-degree directions from the tensile x1 direction.

• Another criterion of Eq.(10.206) by the loss of ellipticity of the governing equation also predicts the same
orientations when the hardening parameter is quite small in plane strain state as has been shown in Fig.
10.24.

• This orientations coincide with the macroscopic maximum shear stress directions.

• The previous numerical simulations also indicate that the directions of the localized bands of the effective
plastic strain are ±45-degree directions.

In general, the Lüders bands extend to approximately the 50-degree direction which is consistent with the solution
above by Eq.(10.251) near the initial yielding. It may be interesting that the numerical two-dimensional simulation
[39] using the Asaro model [2] shows that the orientations of the slip lines are about 44 degrees in almost ultimate
state.

On the other hand, in the case of the plane-strain compression, substitution of the numerically obtained stresses
σ leads to on the both x1-x3 and x1-x2 planes

tan ϕ ≃ ±1.73,± 1
1.73

, 1.73 ≃
√

3 → ϕ ≃ ±60 degrees,±30 degrees (10.253)

near the initial yielding. For largely deformed state, we have

tan ϕ ≃ ±1.41,± 1
1.41

, 1.41 ≃
√

2 → ϕ ≃ ±54.7 degrees,±35.3 degrees, (10.254)

which coincide with the results by Hill [29], although the previous numerical simulations do not show any bands
of localized deformation.
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(a) w=0.00643, ϵ̄p
max=0.0331%,

ϵ̄
p
min = 0.00%

(b) w = 0.025, ϵ̄
p
max = 2.86%,

ϵ̄
p
min = 0.00%

(c) w = 0.250, ϵ̄
p
max = 45.6%,

ϵ̄
p
min = 0.000221%

(d) w = −0.000158, ϵ̄
p
max =

45.7%, ϵ̄p
min = 0.0259% (e) w = −0.250, ϵ̄p

max = 78.1%, ϵ̄p
min = 0.0278%

Fig. 10.46 Unloading and loading of slender plate in plane strain state

Influence of Hardening Coefficient: In the numerical simulations above, we specify very small hardening co-
efficients so that the global behaviors show softening. When we set H = 25 MN/m2 which is one hundred times
larger than the previous value, the global resistance still has softening to some extent, but only the periodical
patterns of deformation appear even at ϵ = 2.5% with relatively small amplitude just like that in Fig. 10.30 (c).
Furthermore, when we use H = 250 MN/m2 which may be frequently employed by many researches; i.e. 1/1000-th
of the Young modulus, the macroscopic resistance show no softening, and we obtain only the homogeneous defor-
mation without any localizations. On the other hand, in the plane stress cases, we observe some localization like
that at ϵ = 2.5% when H = 25 MN/m2. However, for H = 250 MN/m2, no localization appears. These results
are consistent with the conclusions in Fig. 10.24. Namely, the larger the hardening coefficient becomes, the larger
the stress level is needed for the incipience of the localization. Well, then, we may ask why the Lüders bands are
observed in the standard tensile tests, and how we can predict such phenomena.

(4) Unloading Cases

In order to simulate the unloading processes, we apply an alternating load to a cantilever beam. The boundary
conditions of the slender plate employed in the previous sections are slightly changed. All the nodes on the left-
most surface are fixed in all the directions, and the two nodes at x1 = ℓ, x3 = h/2 and x2 = 0, t are forced to displace
to the ±x3-directions. Since other conditions are the same as those in the plane strain state, the initial yield stress
is specified by σy = 2 τy, and the following parameters are used to illustrate the numerical results:

w ≡ W
h
, p ≡ P

Py
, Py ≡

My
ℓ
, My ≡

h2t
6
σy, (10.255a, b, c, d)

where W and P are the specified displacement and the sum of the corresponding reaction forces to the x3-direction
respectively.
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Fig. 10.47 Alternating bending of slender plate in
plane strain state

Up to the state at w ≃ 0.0055, the normal stress σ11 on
the upper and lower surfaces of the fixed left end gradually
increases and reaches the yield stress. However, in the state
shown in Fig. 10.46 (a), large shear deformation starts to be
localized in the region near the loading points on the right
end surface. This kind of localization does not develop when
the hardening coefficient is large as will be explained later on.
Eventually, large plastic deformation is concentrated only in
the right half of the beam. At w = 0.25, the specified dis-
placement is reversed to the upper direction, but the plastic
region in the right half part does not undergo the unloading
process. On the other hand, large plastic region begins to de-
velop only in the left half of the beam. Finally at w = −0.25,
the deformed configuration is compared with that at w = 0.25
in Fig. 10.46 (e), and the global resisting characteristics are
shown in Fig. 10.47. Since the plastic deformation after the
reverse of loading develops only in the left half of the beam,
the reaction force p cannot reach −1 when the global reac-
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Fig. 10.48 Effect of hardening coefficient

(a) w = 0.500, ϵ̄
p
max = 25.0%,

ϵ̄
p
min = 0.145%

(b) w = −0.500, ϵ̄
p
max = 68.8%,

ϵ̄
p
min = 0.819%

Fig. 10.49 With large hardening as H = 250 MN/m2

(a) ∆W = 0.025 mm, ϵ̄
p
max =

163%, ϵ̄p
min = 0.000648%

(b) ∆W = 0.0125 mm, ϵ̄
p
max =

230%, ϵ̄p
min = 0.000237%

Fig. 10.50 With small hardening as H = 0.25 MN/m2;
w = 0.5

tion starts to show yielding. The two hypoelastic models show more or less the same response, and the diagonal
elements of the tangent stiffness matrix remain positive.

When a large hardening coefficient is set at H = 250 MN/m2, the global response is shown by the solid
curve in Fig. 10.48. The plastic deformation develops as is shown in Fig. 10.49, and we can clearly see that no
concentration of the plastic deformation appears near the loading points. Although the microscopic constitutive
law specifies the isotropic hardening,21 the macroscopic resistance shows the kinematic hardening. For this large
hardening coefficient case, results are not dependent on the magnitude of the incremental displacement as far
as ∆W ≤ 0.05 mm. However, for the small coefficient, the global property depends on the magnitude of the
incremental displacement as are shown in Fig. 10.48. Two typical corresponding plastic deformation patterns are
also shown in Fig. 10.50, where the region undergoing the large plastic deformation becomes closer to the loading
points as the incremental displacement is small. The rather soft resistance may result in such mesh-dependent
property.
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Fig. 10.51 Lateral buckling behavior of thin plate and deformed state at w = 0.5; ϵ̄p
max = 19.2%, ϵ̄p

min = 0.0255%

(5) Three-Dimensional Examples

As a three-dimensional example, we here simulate the lateral-torsional buckling of a thin plate. The same specimen
and the boundary conditions employed in the previous section are used, but it is replaced by the plane-stress slender

21 It seems quite interesting, but we may have some bugs in our program. Hahaha
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plate. The loading is given by specifying the displacement W to the x3-direction at one point of x1 = ℓ, x2 = t and
x3 = h/2. It should be noted that no warping effect is taken into account, because only two elements are used to
the x2-direction. Since the three-dimensional settings are used, the initial yield stress is given by σy =

√
3τy. In

the following global responses, no clear bifurcation has been observed, because the loading is not symmetric with
respect to the central x1-x3 plane of the thickness at x2 = t/2; i.e. this non-symmetry acts as an initial imperfection.

(a) w=0.00656, ϵ̄p
max=0.0848% (b) w=0.0333, ϵ̄p

max=1.23%

Fig. 10.52 Right after yielding; ϵ̄p
min=0%

Fig. 10.53 With large hardening as H = 250 MN/m2,
w = 0.5, ϵ̄p

max = 11.1%, ϵ̄p
min = 0.0621%

The macroscopic responses and the deformed state
at w = 0.5 are depicted in Fig. 10.51. The lateral dis-
tortion occurs before p = 1. Also, the plastic defor-
mation develops in the middle portion of the specimen
as is shown in Fig. 10.52, before the plastic moment
is achieved at the fixed end. In the small inset of Fig.
10.51, the elastic responses are shown for the compar-
ison purposes, and the post-buckling behavior remains
stable. This figure indicates that the lateral-torsional
elastic buckling starts near p = 10 or P ≃ 65 kN, so that
the elastoplastic lateral distortion occurs 1/10 times the
elastic buckling level, and the softening behavior is ob-
served macroscopically. Even when H = 250 MN/m2,
the softening starts slightly after the temporary harden-
ing near the initial yielding state. However, as is shown
in Fig. 10.53, the pattern of the plastic deformation be-
comes quite different from that in the case with the small hardening coefficient H = 0.25 MN/m2, and again, the
region of the large plastic deformation gets close to the fixed end. The differences between the hypoelastic models
chosen are not so significant. Also, the diagonal elements of the tangent stiffness matrix remain positive in all the
cases.



Appendix A

Timoshenko Beam Theory

A.1 Governing Equations

A.1.1 Kinematics and Stress Resultants

xz

z

w(x)

u(x)

ux(x, z)

uz(x, z)

B

A

−w′(x)

nγ(x)

ϑ(x)

Fig. A.1 Kinematics of Timoshenko beam

In Chap. 3, the so-called Bernoulli-Euler beam the-
ory has been formulated, in which a cross-section is
kept normal to the beam axis; i.e. the shear deforma-
tion has been neglected as an assumption. Within the
kinematics assumed there, the shear stress is derived
from equilibrium condition with the normal bending
stress, and shows a parabolic distribution as has been
shown in Sec. 3.6.1. Also, the result is consistent with
the solution in Eq.(2.199b) in the framework of plane-
problems of elastic bodies. We here introduce another
classical beam theory which takes the effect of shear
deformation of the beam into account from the begin-
ning of the formulation. Namely, the normality con-
dition of the cross-section to the beam axis will be re-
laxed. Incidentally, a matrix is denoted by a boldface
character in this chapter.

It is called the Timoshenko beam theory which as-
sumes a uniform shear deformation. Therefore, instead of using Eq.(3.2) for the kinematics of beams, we assume

2 ϵxz(x, z) = γ(x). (A.1)

However, the shear deformation at the top and bottom of a cross-section must be zero because no shearing force is
applied on the top and bottom surfaces of the beam. Therefore, this assumption cannot be physically acceptable.
Namely, in reality, ϵxz must be a function of z as well just like the parabolic distribution obtained in the Ber-
noulli-Euler beam theory and Eq.(2.199b). But, we know that the shear deformation is a secondary quantity in
comparison with the bending deformation as long as the beam is long and slender enough as has been shown in
Fig. 3.4. Moreover, we can compensate unrealistic distribution of shear deformation due to the assumption of
kinematics by introducing another parameter kt explained later on.

Fig. A.1 depicts the assumption of the kinematics above. As is clear from this figure, the displacement compo-
nents in the x- and z-directions can be given by

ux(x, z) = u(x) + zϑ(x), uz(x, z) = w(x), (A.2a, b)

in infinitesimal displacements instead of Eq.(3.3), where ϑ(x) expresses not the slope but the rotation of the cross-
section. Using the definition of the strain in Eq.(2.6), substitution of Eq.(A.2) into Eq.(A.1) leads to

2 ϵxz(x, z) = ϑ(x) + w′(x) = γ(x) → ϑ = −w′ + γ, (A.3)

where a prime denotes the differentiation with respect to x. Namely, the rotation ϑ corresponding to θ in Eq.(3.4)
is not equal to the slope −w′ but has a difference by γ due to the shear deformation. Hence, the extension can be
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expressed as
ϵxx(x, y, z) = u′ + zϑ′ = u′ + z (γ′ − w′′). (A.4)

We set that the normal stress obeys the one-dimensional Hooke law in Eq.(2.183a), and that the shear stress
satisfies Hooke’s law in Eq.(2.46). Substituting the strain components assumed above into these Hooke’s laws, we
have relations as

σxx = E ϵxx = E
{
u′ + z

(
γ′ − w′′)} , σxz = 2G ϵxz = G γ, (A.5a, b)

where E and G are the Young modulus and the shear modulus respectively. When the x axis is set to lie through
the centroid of the cross-section, the corresponding stress resultants can be defined by

N(x) ≡
∫

A
σxx dA = EA u′, M(x) ≡

∫
A

zσxx dA = EI (γ′ − w′′) = EI ϑ′, V(x) ≡
∫

A
σxz dA = GktA γ,

(A.6a, b, c)
where the material is assumed to be homogeneous. Also, for simplicity, the cross-section is assumed to be uniform
along the axis of the beam. Note that the coefficient kt must be unity if we use the definition of the shear force
in Eq.(A.6c). However, this coefficient kt is introduced in order to compensate an unexpected situation due to the
assumed uniform shear deformation γ(x) on a cross-section, and is an important parameter defined by the shape of
the cross-section and Poisson’s ratio [11]. For example, we have

kt(circular section) =
6(1 + ν)
7 + 6ν

, kt(rectangular section) =
10(1 + ν)
12 + 11ν

. (A.7a, b)

Note that this parameter has nothing to do with the coefficient representing ratio of the maximum and average shear
stresses defined in Sec. 3.6.1 (1); e.g. it is 3/2 for a rectangular section.

A.1.2 Equilibrium Equations and Boundary Conditions
We can formulate the equilibrium equation and the boundary condition through the virtual work principle in three-
dimensions by using the kinematics above just like the process explained in Sec. 3.9. From Eqs.(A.2), (A.3) and
(A.4), the corresponding variations of kinematics are expressed as

δux = δu + z δϑ, δuz = δw, δϵxx = δu′ + z δϑ′, 2δϵxz = δϑ + δw
′.

Since the shearing component must be included in the Timoshenko beam, we can write the internal virtual work as

(IVW) ≡
∫

V
(σxx δϵxx + 2σxz δϵxz) dV =

∫ ℓ

0

{∫
A
σxx

(
δu′ + z δϑ′

)
+ σxz

(
δϑ + δw′

)}
dA dx,

after substituting the variations above. Replacing the integrals of stress components on a cross-section by the stress
resultants defined in Eq.(A.6), we can rewrite this work as

(IVW) =
∫ ℓ

0

{
N δu′ + M δϑ′ + V

(
δϑ + δw′

)}
dx.

Then, its integration by parts leads to the following expression;

(IVW) = [N δu + M δϑ + V δw]
∣∣∣∣ℓ
0
−

∫ ℓ

0

{
N′ δu +

(
M′ − V

)
δϑ + V ′ δw

}
dx.

Eventually, using the symbol defined in Eq.(3.26), we can express the internal virtual work as

(IVW) = ni [N δu + M δϑ + V δw]
∣∣∣∣
x=0,ℓ
−

∫ ℓ

0

{
N′ δu +

(
M′ − V

)
δϑ + V ′ δw

}
dx. (A.8)

As for the virtual works by the body forces and the surface tractions, we can directly use the same expressions
for the Bernoulli-Euler beam after replacing the slope −w′ by the rotation ϑ, and they are∫ ℓ

0
(p δu + m δϑ + q δw) dx, [Fi δu +Ci δϑ + Si δw]

∣∣∣∣
x=0,ℓ

. (A.9a, b)
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Combining Eqs.(A.8) and (A.9), we obtain the virtual work equation of the Timoshenko beam as follows;

[(ni N − Fi) δu + (ni V − Si) δw + (ni M −Ci) δϑ]
∣∣∣∣
x=0,ℓ

−
∫ ℓ

0

[(
N′ + p

)
δu +

(
M′ − V + m

)
δϑ +

(
V ′ + q

)
δw

]
dx = 0. (A.10)

From the second line of the virtual work Eq.(A.10), the equilibrium equations in terms of the stress resultants are

N′ + p = 0, V ′ + q = 0, M′ − V + m = 0. (A.11a, b, c)

Hereafter, the distributed moment m will be neglected for simplicity. Also, the boundary conditions are obtained
from the first line of the virtual work Eq.(A.10) as

{u = ui or ni N = Fi} , {w = wi or ni V = Si} , {ϑ = ϑi or ni M = Ci} , (A.12a, b, c)

where ui, wi and ϑi are the displacement components specified at the boundary. Except the rotational boundary
condition in Eq.(A.12c), these are identical with those of the Bernoulli-Euler beam given by Eq.(3.25). But,
because of the shear deformation, the slope −w′ is not generally continuous at a loading point of midspan, but the
rotation of the cross-section ϑ must be continuous. So that the rotation instead of the slope must be specified in the
rotational boundary condition of Eq.(A.12c).

A.1.3 Governing Equations in terms of Displacement
As has been shown in the previous section, the governing equations in the axial direction are the same as those
of the elementary beam theory and independent of the bending parts. Therefore, only the governing equations
for bending are examined hereafter. In order to solve statically indeterminate systems, we need to express the
governing equations in terms of the deflection w(x). To that end, substituting Eq.(A.6) into Eqs.(A.11) and (A.12),
and eliminating γ and ϑ by Eq.(A.3), we can write the equilibrium equation as

−EI w′′′′ + q − αt q′′ = 0, (A.13)

and the boundary condition Eq.(A.12) becomes

w = wi or ni
{−EI w′′′ − αt q′

}
= Si, (A.14a)

−w′ − αt
(
w′′′ + αt

q′

EI

)
= ϑi or ni

{−EI w′′ − αt q
}
= Ci, (A.14b)

where the following parameters are introduced;

αt ≡
EI

GktA
= ℓ2 αt, αt ≡

E
G(λt)2 , λt ≡

ℓ√
I/(ktA)

. (A.15a, b, c)

The parameter λt represents a slenderness of the Timoshenko beam; i.e. one kind of the slenderness ratio. When
G → ∞; i.e. if the shear deformation can be neglected, we have αt → 0 and αt → 0, and all the governing
equations coincide with those of the elementary beam theory.

A solution of the deflection at the center of the span of a simply supported beam is given in Eq.(3.88). The
corresponding deflection of the left span can be obtained as

w(x) = − P
12EI

x3 +
Pℓ2

16EI
x +

P
2GktA

x. (A.16)

In this case, since the shear deformation γ(x) is

γ(x) =
P

2GktA
, (A.17)

the third term of the equation above apparently represents the shearing component, while the first and second
terms are the solutions of the Bernoulli-Euler beam. In another case of the simply supported beam subjected to a
uniformly distributed force q, the deflection is obtained as

w(x) =
q

24EI
x (x − ℓ)

(
x2 − ℓx − ℓ2

)
+

q
2GktA

x (ℓ − x) . (A.18)
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Since the corresponding shear deformation is also obtained as

γ(x) = − q
GktA

(
x − ℓ

2

)
, (A.19)

the deflection component due to the shear deformation wshear(x) can be estimated by

wshear(x) =
∫ x

0
γ(ξ) dξ, (A.20)

and substitution of Eq.(A.19) into Eq.(A.20) of course results in the second term of Eq.(A.18).
Let us examine a fixed beam subjected to a concentrated load P at the center as an example of the statically

indeterminate beam. The deflection in the left span is obtained as

w(x) = − P
12EI

x3 +
Pℓ

16EI
x2 +

P
2GktA

x. (A.21)

In this case, since the shear deformation γ(x) becomes the same as that of the simple beam, the third term is the
component wshear(x) due to shear deformation. Also, application of an uniformly distributed load q yields the
deflection as

w(x) =
q

24EI
x2 (ℓ − x)2 +

q
2GktA

x (ℓ − x) , (A.22)

where the first term is the solution of the Bernoulli-Euler beam due to bending, and the second term is wshear(x).
On the other hand, when the right end of the fixed beam is forced to deflect by the amount of ∆, the deflection

is obtained as
w(x) = ∆

1
ℓ3 x2 (3ℓ − 2x) + ∆

12αt
ℓ3 (1 + 12αt)

x (ℓ − 2x) (ℓ − x) . (A.23)

Note that the deflection due to shearing becomes zero at the both ends and center, because the shear deformation
and the shear force become constant as is expressed by

γ =
12αt ∆

ℓ (1 + 12αt)
, V =

12EI ∆
ℓ3 (1 + 12αt)

=
12EI ∆
ℓ3

(
1 − 12αt

1 + 12αt

)
. (A.24a, b)

Again, the total deflection can be decomposed into the bending and shear parts as before. However, the effect of
the shear deformation is represented not by a simple parameter αt but by a complicated coefficient as 12αt/(1+12αt).
This coefficient will appear in the finite element later on.

A.2 Virtual Work Equation and Stiffness Equations

A.2.1 Virtual Work Equation
A basic weak form corresponding to the equilibrium Eq.(A.11) can be expressed by

0 = −
∫ ℓ

0

{
δw (V ′ + q) + δϑ (M′ − V)

}
dx.

Integration by parts can take the boundary condition of Eq.(A.12) into account to obtain

0 =
∫ ℓ

0

{
V δ(ϑ + w′) + M δϑ′

}
dx −

∫ ℓ

0
q δw dx −

[
S1 δw1 +C1 δϑ1 + S2 δw2 +C2 δϑ2

]
.

Considering Eq.(A.3), we substitute Eq.(A.5) into the equation above, and the final form of the virtual work
equation is obtained as∫ ℓ

0

{
GktAγ δγ + EIϑ′ δϑ′

}
dx −

∫ ℓ

0
q δw dx −

[
S1 δw1 +C1 δϑ1 + S2 δw2 +C2 δϑ2

]
= 0. (A.25)

This derivation is a reversed process of the formulation in Sec. A.1.2. Or, substitution of Eq.(A.3) leads to another
form of the internal virtual work as∫ ℓ

0

{
GktAγ δγ + EI

(−w′′ + γ′) δ (−w′′ + γ′)} dx. (A.26)
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A.2.2 Stiffness Equations
(1) Lowest Order Elements

On the basis of Eq.(A.25), displacement functions can be simply assumed as follows; γ is set at constant, and ϑ
is given by a first order polynomial. Therefore, the corresponding deflection w is expressed by a second order
polynomial from Eq.(A.3). Hence, four unknown coefficients are needed to express γ and w and are related to
the four kinematical quantities wi and ϑi, so that the continuity conditions between adjacent elements can be
secured. However, this choice of the displacement functions leads to a situation that the second term γ′ of the
integrand vanishes in another expression of the internal virtual work Eq.(A.26). This contradiction can be avoided
by assuming γ by a first order polynomial, but it needs another unknown coefficient and results in cumbersome
deduction of a finite element as will be formulated in the next section. On the other hand, since the second term
of the integrand of Eq.(A.26) represents the bending property in which the contribution of γ may be considered to
have secondary effect, we may employ this simplest displacement functions as the lowest order approximation and
set

γ(x) =
w2 − w1

ℓ
+
ϑ1 + ϑ2

2
, w(x) =

(
1 − x

ℓ

)
w1 +

x(x − ℓ)
2ℓ

ϑ1 +
x
ℓ
w2 +

x(ℓ − x)
2ℓ

ϑ2.

Substitution of these functions into Eq.(A.26) yields the corresponding stiffness matrix as

GktA
ℓ

−GktA
2

−GktA
ℓ

−GktA
2(

EI
ℓ
+

GktAℓ
4

)
GktA

2

(
−EI
ℓ
+

GktAℓ
4

)
GktA
ℓ

GktA
2

Symm.
(

EI
ℓ
+

GktAℓ
4

)


. (A.27)

Although the Timoshenko beam theory is one kind of improvement of the Bernoulli-Euler beam theory, this
matrix in Eq.(A.27) does not converge to the stiffness matrix in Eq.(4.25) when G → ∞. Also, too many elements
are needed in finite element calculation using Eq.(A.27); i.e. the rate of convergence is very low, but we can show
that a finite element solution converges to the corresponding exact solution [33].

(2) Higher Order Element — the Appropriate Element

It is obvious that the strong form Eq.(A.13) in terms of the deflection has the fourth-order derivative of w, and that
the solution may be a polynomial of at least the third order depending on q. So that, we here assume that γ is set
at constant for the time being, and we employ that

γ(x) = γ0, (A.28a)
w(x) = w1 ψ1(x) − w′ ψ2(x) + w2 ψ3(x) − w′2 ψ4(x) = w1 ψ1 + (ϑ1 − γ0)ψ2 + w2 ψ3 + (ϑ2 − γ0)ψ4

= w1 ψ1(x) + ϑ1 ψ2(x) + w2 ψ3(x) + ϑ2 ψ4(x) + γ0 ψ5(x), (A.28b)

where ψn’s are the displacement functions defined in Eq.(4.22), and an additional function

ψ5(x) ≡ −ψ2(x) − ψ4(x) = x − 3
x2

ℓ
+ 2

x3

ℓ2

is introduced through Eq.(A.3).
It is true that γ′ again vanishes in Eq.(A.26), but γ0 is included in the displacement function of w in Eq.(A.28b).

Hence, we can expect that the shearing effect can be taken into account to some extent. And, it is quite interesting
that the resulting stiffness equation becomes the same even when a first order polynomial is employed for γ.

Substitution of Eq.(A.28) into Eq.(A.25) results in the element stiffness equation as
S1
C1
S2
C2
0


+


q1
q2
q3
q4
q5


=


 kb


 h


⌊ ht ⌋ h5



w1
ϑ1
w2
ϑ2
γ0


, (∗)
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where kb is the stiffness matrix in Eq.(4.23a) and (4.25), and qi’s (i=1～ 4) are the equivalent nodal forces defined
in Eq.(4.23b). Explicit expressions of h5 and h are given in reference [33], and we set

h ≡ ⌊h1 h2 h3 h4⌋t, q5 ≡
∫ ℓ

0
qψ5 dx, (A.29a, b)

hn ≡ EI
∫ ℓ

0
ψ′′n ψ

′′
5 dx (n = 1, 2, 3, 4), h5 ≡ GktAℓ +

∫ ℓ

0
EI (ψ′′5 )2 dx, (A.29c, d)

where q5 becomes zero under the uniformly distributed loading. The left-hand side of the fifth line of the stiffness
Eq.(∗) is zero, because there is no force component corresponding to the internal shear deformation γ in the
boundary condition and in the external virtual work term in Eq.(A.25). Therefore, this fifth equation holds only
within each finite element, and is a kind of constraint condition on the freedom γ0. In other words, since the
boundary condition of Eq.(A.12) does not require continuity of γ across the adjacent elements, this freedom γ0
must be eliminated in the element stiffness Eq.(∗) before assemblage of elements. From this fifth equation, we
have

γ0 =
q5 − ht u

h5
, (∗∗)

where, for convenience, we put
u ≡ ⌊w1 ϑ1 w2 ϑ2⌋t.

Substitution of Eq.(∗∗) into the right-hand side of the other four equations of Eq.(∗) leads to
S1
C1
S2
C2

 +


q1
q2
q3
q4

 = k u + h γ0 = k u + h
q5 − ht u

h5
.

Eventually, the final form of the element stiffness equation can be expressed as

f + q(T) = kt u, (A.30)

where the following expressions are defined;

f ≡ ⌊S 1 C1 S 2 C2⌋t, q(T) ≡
{

q(T)
i

}
, q(T)

i ≡ qi −
q5 hi

h5
, (A.31a, b, c)

kt ≡ kb −
h ht

h5
=

EI
1 + 12αt



12
ℓ3 − 6

ℓ2 −12
ℓ3 − 6

ℓ2

4 + 12αt
ℓ

6
ℓ2

2 − 12αt
ℓ

12
ℓ3

6
ℓ2

Symm.
4 + 12αt

ℓ


. (A.31d)

When the shear deformation is neglected, we can set G → ∞ and thus αt → 0, and Eq.(A.31d) coincides with
the stiffness Eq.(4.25) of the elementary beam theory. It should be noted that the shearing elements of the stiffness
matrix have the influence coefficient 12αt/(1+12αt) in Eqs.(A.23) and (A.24). Furthermore, this Eq.(A.30) happens
to be identical with the exact stiffness equation derived in the field of the matrix structural mechanics. Namely,
the same stiffness Eq.(A.30) can be obtained by integrating Eq.(A.13) under the general boundary condition of
Eq.(A.14). Although a word ‘higher order’ has been used in the title of this section, the obtained element is found
to be the most appropriate one.



Appendix B

Finite Displacement Theory of Bars in Plane
Motion

B.1 Finite Displacement and Deformation

B.1.1 Definition of Strain

We here formulate a beam theory in finite displacements which can handle problems even after the buckling point,
but the material is assumed to remain linearly elastic. Furthermore, the beam deforms only on a plane and is
subjected to the axial forces and the in-plane bending actions. Since an arbitrary position vector is expressed by
Eq.(2.1), a differential element vector in the initial configuration can be expressed by

dp0 = dxi ei, (B.1)

in a rectangular Cartesian coordinate system. On the other hand, Eqs.(2.2) and (2.3) yield the corresponding
differential element vector in the current configuration as

dp = dp j e j =

(
δ ji +

∂u j

∂xi

)
dxi e j = dxi Gi, (B.2)

where the base vectors Gi in the current state are defined by

Gi ≡
(
δ ji +

∂u j

∂xi

)
e j (B.3)

which coincide with the orthonormal spatial base vectors ei in the initial state. However, Gi are no longer unity and
non-orthogonal to each other in the current configuration, because they are embedded in the material undergoing
arbitrary deformation.

Green’s strain E is defined by the difference between the lengths of a differential element before and after
deformation as is given in Eq.(2.10). Substitution of the equations above into this Eq.(2.10) results in

(ds)2 − (ds0)2 =
(
Gi G j − ei e j

)
dxi dx j =

(
Gi G j − δi j

)
dxi dx j ≡ 2 Ei j dxi dx j.

Namely, Green’s strain tensor can be defined by

Ei j ≡
1
2

(
Gi G j − δi j

)
. (B.4)

Putting Gi of Eq.(B.2) into Eq.(B.4), we can express components of the Green strain as

Ei j ≡
1
2

(
∂ui

∂x j
+
∂u j

∂xi
+
∂uk

∂xi

∂uk

∂x j

)
, (B.5)

where the third term represents a nonlinear component which has been neglected in Eq.(2.6) in the framework of
the infinitesimal deformation. The definition in Eq.(2.10) includes only the linear portions of this equation.
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Physical meanings of the Green strain can be recognized by comparison with the linear strain components as
follows. As long as the magnitude of the strain is very small, the normal component E11 can be approximated by

E11 =
1
2

(
|G1|2 − 1

)
=

1
2

{
(1 + ϵ11)2 − 1

}
≃ ϵ11

which is the linear term in Eq.(2.4). Similarly, the shearing component E12 is approximately identical with the
linear term; i.e.

E12 =
1
2
|G1| |G2| cos Ĝ1G2 =

1
2

(1 + ϵ11) (1 + ϵ22) sin (ϵ12 + ϵ21) ≃ ϵ12.

B.1.2 Virtual Work Principle and Stress
Since Green’s strain is conjugate with the second Piola-Kirchhoff stress tensor S ji, the virtual work equation has
the same form as Eq.(4.73) but must be rewritten as∫

V
S ji δEi j dV −

∫
V

Xi δui dV −
∫

S
Fi δūi dS = 0. (B.6)

This stress tensor has components of the traction in the current state to the directions of the base vectors Gi on a
unit area in the initial configuration whose unit outer-normal vector is oriented to the direction of G j in the current
state. Therefore, the components do not always have physically meaningful magnitudes and dimensions, because
the corresponding base vectors are not unity. For example, as long as the change of the differential area element is
kept small, we may define a corresponding physical components by

Physical components of S ji = S ji × |Gi| , where i is not summed. (B.7)

For simplicity, we use symbols (x, y, z) for indices in place of numeral expressions by (1, 2, 3).

B.1.3 Assumption of Kinematics

xz

B

A

ϑ(x)

Λ(x, z)

ϑ
Γ(x, z)

n

Gx

Gz

ez

ex

Fig. B.1 Kinematics of Timoshenko beam

We start with the Timoshenko beam theory [32, 37]
including the effect of shear deformation. The kine-
matics explained in App. A is depicted in Fig. B.1.
If the sine and cosine functions are not approxi-
mated, Eq.(A.2) in the infinitesimal displacements
must be exactly expressed by

ux(x, z) = u(x) + z sinϑ(x), (B.8a)
uz(x, z) = w(x) + z {cosϑ(x) − 1} , (B.8b)

where ϑ(x) denotes the rotation of the cross-
section. The beam axis is placed through the cen-
troid, and the differential axial element is paral-
lel to the x-axis in the initial configuration. How-
ever, in the current state, the element is oriented to
the Gx-direction. Therefore, the angle between the
axial element of the bar1 and the x-axis becomes
Λ(x, z) ≡ {ϑ(x) − Γ(x, z)}, where Γ is an angle due to the shear deformation. Hence, a geometric relation between
the rotation and the displacement components is given by

tanΛ0(x) = tan {ϑ(x) − Γ0(x)} = − w′(x)
1 + u′(x)

, (B.9)

where a prime indicates the differentiation with respect to x. The quantities with a subscript 0, Λ0(x) and Γ0(x),
are the rotation of the base vector Λ(x, 0) and the shear deformation Γ(x, 0) on the beam axis at z = 0 respectively.

Substituting Eq.(B.8) into Eq.(B.5) and using Eq.(B.9), we can express the strain tensor components as

Exx =
1
2

(g − 1) , g ≡ |Gx|2 , 2 Exz =
√
g sin Γ =

√
g0 sinΓ0 = γ, (B.10a, b, c)

1 A word ‘bar’ is used in this chapter, because the formulation is in the framework of the so-called beam, column and beam-column theories.
But, torsion is not included.
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where

g = (1 + ϵ + z κ)2 + γ2, g0 ≡ g(z = 0) = (1 + ϵ)2 + γ2 = (1 + u′)2 + (w′)2, (B.11a, b)
ϵ ≡ √g0 cosΓ0 − 1, γ ≡ √g0 sinΓ0, κ ≡ ϑ′. (B.11c, d, e)

By the definitions in Eqs.(B.9) and (B.11), the displacement gradients are given by

u′ = (1 + ϵ) cosϑ + γ sinϑ − 1, w′ = −(1 + ϵ) sinϑ + γ cosϑ. (B.12a, b)

Then, the orientation of an arbitrary axial differential element in the current configuration can be specified by

cosΛ =
1 + ϵ + zκ cosϑ

√
g

, sinΛ =
γ + zκ sinϑ
√
g

. (B.13a, b)

Or, the shearing part is expressed by

cosΓ =
1 + ϵ + z κ
√
g

, sinΓ =
γ
√
g
. (B.14a, b)

B.2 Bernoulli-Euler Beam Theory — Beautiful Model

B.2.1 Kinematics
When the length of the beam is long enough in comparison with the dimensions of the cross-section, the shear
deformation can be neglected, and the bar can be called the Bernoulli-Euler beam; i.e. we can set Γ ≡ 0 from
the beginning of the formulation. Then, all the governing equations including the constitutive law become quite
sophisticated without any approximations. In order to distinguish the theories, we here use θ for the rotation in
place of ϑ. The kinematics in Eq.(B.8) becomes

ux(x, z) = u(x) + z sin θ(x), uz(x, z) = w(x) + z {cos θ(x) − 1} , Λ(x, z) = Λ0(x) = θ(x), (B.15a, b, c)

where the rotation of the cross-section θ(x) becomes equal to the slope of the beam axis. Actually, from Eq.(B.9),
we have the following geometric relation

tan θ(x) = − w′(x)
1 + u′(x)

, (B.16)

and, therefore, θ is dependent on u and w. Similarly, Eq.(B.11) can be rewritten

√
g = 1 + ϵ + z κ, ϵ =

√
g0 − 1, κ = θ′ = − 1

g0

{(
1 + u′

)
w′′ − w′ u′′} . (B.17a, b, c)

And, from Eqs.(B.16) and (B.17), the displacement gradients are given by

u′ = (1 + ϵ) cos θ − 1, w′ = −(1 + ϵ) sin θ. (B.18a, b)

Comparing the definitions of strains in Eqs.(B.4) and (B.10a), we can see that g in Eq.(B.10b) is a squared
norm of the base vector Gx after deformation. Then, a physically meaningful extension e can be defined by a
change of the length of the base vector Gx as

e ≡ |Gx| −
∣∣∣gx

∣∣∣ = √g − 1. (B.19)

Using Eq.(B.17a), we have an explicit and simple expression in terms of the axial deformations as

e = ϵ + z κ. (B.20)

Namely, the extension of the Bernoulli-Euler beam also shows a linear (triangular) distribution on a cross-section
even in finite displacements just like that of the infinitesimal displacement theory.

By the way, the definition of the curvature in Eq.(B.17c) seems different from those in mathematics. It is
because the definitions of the independent variables used here are different from those in mathematics. In this
chapter, the variable x represents a position along the beam axis which coincides with the spatial coordinate only
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in the initial configuration. On the other hand, a curve ζ = ζ(ξ) in mathematics is described by a function with
respect to the spacial coordinates (ξ, ζ), and a curvature is defined by a function of the spacial position ξ or the
curvilinear coordinate s along the curve. We here show relations between those curvatures.

The beam axis in the current state can be expressed by a curve defined by

ξ = x + u(x), ζ = w(x).

These definitions change the expression in Eq.(B.17c) into

κ(x) = θ′(x) =
dθ(x)

dx
= − (

1 + u′
) 1

1 +
(

dζ
dξ

)2

d2ζ

dξ2 .

Then the corresponding curvature in terms of (ξ, ζ) can be defined by

κ̃(ξ) ≡ dθ(ξ)
dξ
=

1
1 + u′

κ(x),

and substitution of the equation above into this equation results in

κ̃(ξ) = − 1

1 +
(

dζ
dξ

)2

d2ζ

dξ2 = κ̃(s) = −d2ζ

ds2 ,

or

κ(s) ≡ dθ(s)
ds
= κ(ξ) = − 11 +

(
dζ
dξ

)2


3/2

d2ζ

dξ2 =
1√

1 +
(

dζ
dξ

)2
κ̃(ξ),

which are identical with the expressions found in standard textbooks of mathematics.

B.2.2 Equilibrium and Boundary Conditions
Substituting Eq.(B.10) into Eq.(B.6), and considering Eq.(B.19), we can express the internal virtual work by∫

V
Sxx δExx dV =

∫
V

√
g Sxx δe dV, (B.21)

neglecting the shear part Exz. It should be noted that the physical component of the extension e is used in the
right-hand side in place of Exx. Therefore, the corresponding stress tensor component Sxx must be also replaced by
a physical quantity, because the base vector Gx is no longer unity due to extension by Exx. Since the cross-section
does not deform by the assumption, referring to Eq.(B.7), we can define a physical component σ of the stress
component Sxx by

σ ≡ √g Sxx, (B.22)

where
√
g represents the norm of the base vector Gx. Then, the internal virtual work above becomes simple as∫

V
σδe dV (B.23)

which is acceptable from a physical point of view.
Since the first variation of the physical extension of Eq.(B.20) is

δe = δϵ + z δκ,

the internal virtual work Eq.(B.23) can be rewritten as∫
x

(N δϵ + M δκ) dx, (B.24)
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where basic stress resultants are defined by

N ≡
∫

A
σ dA, M ≡

∫
A

zσ dA (B.25a, b)

which are formally the same as those in the infinitesimal displacement theory.
Considering Eqs.(B.16) and (B.17), we can derive the first variations of deformation as

δϵ = cos θ δu′ − sin θ δw′, δκ = δθ′.

Furthermore, from Eq.(B.16)

δθ = − 1
√
g0

(
cos θ δw′ + sin θ δu′

)
.

On the other hand, without distributed applied moment, the external virtual work parts can be expressed by

−
∫

x
(p δu + q δw) dx − (F δu + S δw +C δθ)

∣∣∣∣
x=0,ℓ

(B.26)

within the framework of the beam theory. The variational principle of the virtual work evaluated by a combination
of Eqs.(B.26) and (B.24) yields the Euler equations which are the equilibrium equations as(

N cos θ +
M′
√
g0

sin θ
)′
+ p = 0, (B.27a)(

−N sin θ +
M′
√
g0

cos θ
)′
+ q = 0. (B.27b)

Also, the corresponding boundary conditions can be specified by the same principle as

u = given or ni

(
N cos θ +

M′
√
g0

sin θ
)
= Fi, (B.28a)

w = given or ni

(
−N sin θ +

M′
√
g0

cos θ
)
= Si, (B.28b)

θ = given or ni M = Ci, (B.28c)

where ni is defined by Eq.(3.26), and the external applied forces are defined in Figs. 3.7 and 3.8.

B.2.3 Constitutive Equation
As for the constitutive law, the conjugacy in Eq.(B.23) suggests that it is straightforward to assume some kinds of
relations between σ and e. As the simplest elastic relation, a linear one-dimensional elasticity can be specified by

σ = E e = E (ϵ + z κ) , (B.29)

where E is an elastic coefficient and can be called Young’s modulus. Accordingly, relations between the stress
resultants and the deformations can be expressed by

N = EA ϵ, M = EI κ (B.30a, b)

which are formally linear relations and seem to be quite appropriate from a physical point of view. However,
as is clear from Eq.(B.17), the deformation quantities ϵ and κ are highly nonlinear functions of the displacement
components u and w.

B.2.4 Buckling Load
As a basic but important application, we derive the elastic buckling load Pcr of a cantilever beam within the
framework of the Bernoulli-Euler beam theory. The problem is stated in Fig. 5.23, and the solution before buckling;
i.e. a trivial solution is given by

u = − P
EA

x, w = 0, θ = 0, ϵ = − P
EA

, N = −P, M = 0.
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We here seek for the buckling load by examining existence of a disturbed solution near this trivial solution. A
similar approach has been used to analyze the instability of a rigid-body-spring model in Chap. 5. To this end, we
expand a possible solution as

u(x) := − Px
EA
+ ∆u(x), w(x) := ∆w(x) etc., (B.31a, b)

and substitute these expansions into the governing equations. Then, linearizing the equations in terms of the
perturbed solutions with a symbol ∆, we obtain linear homogeneous governing equations for the perturbations.
The obtained governing equations form an eigenvalue problem, and the buckling load Pcr can be calculated so that
the eigenvalue problem has at least one non-trivial solution for the perturbed quantities. Explicit formulation and
solution procedure can be found in the references [32, 37].

The buckling load obtained includes the effect of the shortening before buckling and is identical with the
formula found in the reference [79], and it is given by

Pcr ℓ
2

EI
=
λ2

2

1 −
√

1 −
(
π

λ

)2
 , (B.32)

where λ is the slenderness ratio. If the shrinkage prior to the buckling can be neglected, the solution coincides with
the Euler buckling load as

Pcr ℓ
2

EI
=
π2

4
(B.33)

which is also a solution of the beam-column in Eq.(5.43b). Application of the axial load shrinks the column, and
the effective buckling length becomes short to make the buckling load larger than π2/4 in Eq.(B.32). From this
equation, if the column is short enough so that the slenderness ratio is smaller than π, the column does not buckle,
although such a short column cannot be modeled by a beam theory. When the column is short, the effect of shear
deformation also becomes larger, and we have to use the Timoshenko beam theory. On the other hand, when the
column is slender enough; i.e. when the slenderness ratio is large enough, the Taylor expansion of the squared term
in Eq.(B.32) results in Eq.(B.33) if the first two terms are used. One of the methods to analyze the post-buckling
behavior has been explained in Sec. 5.6.2.

B.2.5 Variational Principle and Elastica

As a supplementary information, another beam theory is formulated by the principle of minimum potential energy.
Since the constitutive law of the Bernoulli-Euler beam is specified by Eq.(B.29), the material obeys one kind of
hyperelastic model with a quadratic form in terms of the physical extension e. Taking into account the virtual work
of the applied forces in Eq.(B.26), we can define a functional Π to define the total potential energy by

Π ≡
∫

V

1
2

E e2 dV −
∫

x
(p u + qw) dx − (F u + S w +C θ)

∣∣∣∣
x=0,ℓ

. (B.34)

The stationary condition of this functional Π with the constitutive Eq.(B.30) results in the Euler equations and the
boundary conditions in Eqs.(B.27) and (B.28). We recommend readers to carry out this procedure of derivation.

Then, using the variational principle, we here formulate governing equations of the Elastica: i.e. the inexten-
sible beam theory explained in Sec. 5.6.3. To this end, we must include a constraint condition given by Eq.(5.90)
as

ϵ = 0 (5.90) copied

into the functional above. If we use a Lagrange multiplier, say P, this condition can be embedded intoΠ. Namely,
Eq.(B.34) must be changed into

Π ≡
∫

V

1
2

E e2 dV −
∫

x
(p u + qw) dx − (F u + S w +C θ)

∣∣∣∣
x=0,ℓ
−

∫
x

P ϵ dx. (B.35)

The first variation of this functional leads to

δΠ =

∫
x
{(N + P) δϵ + M δκ} dx +

∫
x
ϵ δP dx −

∫
x

(p δu + q δw) dx − (F δu + S δw +C δθ)
∣∣∣∣
x=0,ℓ
= 0,
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yielding the Euler equations as{
(N + P) cos θ +

M′
√
g0

sin θ
}′
+ p = 0,

{
− (N + P) sin θ +

M′
√
g0

cos θ
}′
+ q = 0, ϵ = 0,

and the boundary conditions as

u = given or ni

{
(N + P) cos θ +

M′
√
g0

sin θ
}
= Fi,

w = given or ni

{
− (N + P) sin θ +

M′
√
g0

cos θ
}
= Si,

θ = given or ni M = Ci.

The third equation of the obtained Euler equations above is the inextensible condition of Eq.(5.90), and we have
from Eq.(B.30a)

g0 = 1, N ≡ 0. (B.36a, b)

Eventually, the equilibrium equations are expressed by(
P cos θ + M′ sin θ

)′
+ p = 0, (B.37a)(−P sin θ + M′ cos θ
)′
+ q = 0,

(
1 + u′

)2
+

(
w′

)2
= 0, (B.37b, c)

and the boundary conditions are given by

u = given or ni
(
P cos θ + M′ sin θ

)
= Fi, (B.38a)

w = given or ni
(−P sin θ + M′ cos θ

)
= Si, (B.38b)

θ = given or ni M = Ci. (B.38c)

Although these seem to be the same as those of the extensible Bernoulli-Euler beam because the axial force N is
simply replaced by P, this new axial force P has nothing to do with the extension of the beam axis and is a stress
resultant as a reaction to the inextensible constraint. Addition of one constraint condition in Eq.(B.37c) requires
one more independent function, that is P(x). Furthermore, the kinematics must be changed through the inextensible
condition as

sin θ = −w′, cos θ = 1 + u′, κ ≡ θ′ = −w
′′

1 + u′
=

u′′

w′
. (B.39a, b, c)

In this case, the meaning of the mathematical tool called the Lagrange multiplier can be clearly recognized from
a physical point of view relating to P. Another interpretation is possible within the framework of the minimum
principle; i.e. this P can be considered as an expensive ‘penalty’ in order to satisfy the supplementary condition of
ϵ = 0. For example, the penalty method used in the numerical analyses for the contact problems is also based on
the same principle. Another example is found in the formulation of a theory of an incompressible material such as
rubber. In the incompressible materials, no volumetric deformation occurs, so that a constraint condition as

ϵkk = 0 or
∂uk

∂xk
= 0 (B.40)

must be satisfied. Multiplying this condition by a Lagrange multiplier p, and adding it into the functional of the
Hooke elastic model, we may deduce the Navier-Stokes equation given in Eq.(2.159) as

µ
∂2ui

∂x j ∂x j
+
∂p
∂xi
+ Xi = 0, (B.41)

where p represents the hydrostatic pressure defined positive in tension, and is a reaction (internal) force to the
incompressibility. This p corresponds to P of the Elastica above.

B.3 Timoshenko Beam Theory

B.3.1 Equilibrium and Boundary Conditions
Let us go back to the Timoshenko beam theory. Except constitutive laws explained in the next section, we need
no approximation and can also use a physically clear theory, in which the physical extension e in Eq.(B.19).
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Substituting Eq.(B.10) into Eq.(B.6), we can express the internal virtual work as∫
V

(Sxx δExx + 2 Sxz δExz) dV =
∫

V

(√
g Sxx δe + Sxz δγ

)
dV.

Since the base vector Gz remains a unit vector because of the assumption of no cross-sectional deformation, the
shear stress to the z-direction Sxz itself is a physical component as is clear from Eq.(B.7). On the other hand, the
normal stress Sxx needs a correction by

√
g as has been explained in Eq.(B.22). Therefore two physical components

of the stress tensor can be defined by
σ ≡ √g Sxx, τ ≡ Sxz. (B.42a, b)

Using these definitions, we can rewrite the internal virtual work equation above as∫
V

(σδe + τ δγ) dV. (B.43)

From Eq.(B.11a) etc., the variation of the extension is given by

δe = cosΓ δ (ϵ + z κ) + sin Γ δγ,

and substitution of this expression into Eq.(B.43) results in another expression of the internal virtual work as∫
x

(N δϵ + M δκ + V δγ) dx, (B.44)

in terms of the basic three stress resultants which can be re-defined in this framework of the theory by

N ≡
∫

A
σ cosΓ dA, M ≡

∫
A

zσ cosΓ dA, V ≡
∫

A
(τ + σ sin Γ) dA. (B.45a, b, c)

Eq.(B.44) shows a physically clear form composed of three virtual work components; one of which is a work
component done by the axial force and the extension of the beam axis; the second term of which is a component
done by the bending moment and the curvature of the beam axis; the last of which is another component done
by the shear force and the shear deformation of the cross-section. On the contrary, the definitions of the stress
resultants in Eq.(B.45) seem relatively complex, because the base vector Gx to the direction of the beam axis is no
longer perpendicular to the cross-section. This non-normality makes the direction of the normal stress component
σ deviate from the normal direction of the cross-section, and this situation makes the definitions of the sectional
forces complicated. For example, the axial force N is defined by a normal component of σ which is σ cosΓ. So
is the bending moment M. On the other hand, the shear force is defined by not only the shear stress τ but also a
tangential component of σwhich is σ sin Γ. If you can accept these explanations, you may feel that the expressions
of Eq.(B.45) are not so complex but rather rational and logical.

From Eqs.(B.9) and (B.11), the variations of the deformation measures are obtained as

δϵ = cosϑ δu′ − sinϑ δw′ − √g0 sin Γ0 δϑ, δκ = δϑ′, δγ = sinϑ δu′ + cosϑ δw′ +
√
g0 cosΓ0 δϑ.

Since the external virtual work parts are the same as Eq.(B.26) for the Bernoulli-Euler beam theory, the variational
principle basing on the internal virtual work Eq.(B.44) together with the external virtual work Eq.(B.26) yields the
Euler equations as

(N cosϑ + V sinϑ)′ + p = 0, (B.46a)
(−N sinϑ + V cosϑ)′ + q = 0, (B.46b)
M′ − √g0 (V cosΓ0 − N sin Γ0) = 0. (B.46c)

Or, using the relation in Eq.(B.11), we can rewrite the moment equilibrium Eq.(B.46c) as

M′ − (1 + ϵ) V + γ N = 0. (B.47)

The corresponding boundary conditions are also obtained as

u = given or ni (N cosϑ + V sinϑ) = Fi, (B.48a)
w = given or ni (−N sinϑ + V cosϑ) = Si, (B.48b)
ϑ = given or ni M = Ci, (B.48c)

where ni is defined in Eq.(3.26). We also recommend readers to carry out this process of derivation.
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B.3.2 Constitutive Equation
As is suggested by the conjugacy in the internal virtual work Eq.(B.43), it is straightforward to construct constitu-
tive models to connect the normal stress σ directly to the physical extension e and to relate the shear stress τ to the
shear deformation γ. Namely, we here assume that

σ = E e, τ = G γ, (B.49a, b)

where E and G are some kinds of elastic coefficients, and they may be Young’s modulus and the shear modulus
respectively. However, the corresponding constitutive laws between the stress resultants and the displacement
components become very complicated, because the relation of Eq.(B.11) and the definition of the sectional forces
in Eq.(B.45) are highly nonlinear. So that no clear linear relation such as Eq.(B.30) for the Bernoulli-Euler beam
can be specified.

Therefore, we need to make some approximations for the constitutive laws. Since we restrict the deformation
within elastic range, the strain measures are considered to be relatively small enough to neglect higher order
nonlinear terms from a physical point of view. First of all, from Eq.(B.14), we can approximate as

cosΓ ≃ 1, sin Γ ≃ γ

1 + ϵ
. (B.50a, b)

Note that the extension ϵ in the denominator of Eq.(B.50b) should never be neglected in comprison with unity.
This is, for example, because we need to take into account the effect of shrinkage prior to the buckling. Substi-
tuting Eqs.(B.49) and (B.50) into Eq.(B.45), and eliminating higher order terms, we can specify an approximate
constitutive model as

N = EA ϵ, M = EI κ, V = GktA γ + N
γ

1 + ϵ
, (B.51a, b, c)

which is hereafter called the ‘first order theory (model)’. The coefficient kt in Eq.(B.51c) is a correction parameter
defined in Eq.(A.7). The second term of Eq.(B.51c) represents the shearing contribution by the normal stress in
Eq.(B.45c), and is one of the most important terms.

However, since the axial force is proportional to the extension as is shown in Eq.(B.51a), the second term in
Eq.(B.51c) can be considered to be a second order term of the strain measures, and can be neglected in comparison
with the first term. So that another approximate constitutive law for the shear force can be specified by

V = GktA γ (B.52)

which is formally equivalent to the relation in infinitesimal displacements, and is hereafter called the ‘second order
theory (model)’.

B.3.3 Approximate Field Equation
Eventually, the governing equations of the first order model are given by

u′ = (1 + ϵ) cosϑ + γ sinϑ − 1, w′ = −(1 + ϵ) sinϑ + γ cosϑ, (B.53a, b)

ϑ′ =
M
EI
, ϵ =

N
EA

, γ =
V

GktA +
N

1 + ϵ

, (B.53c, d, e)

with the equilibrium equations as

(N cosϑ + V sinϑ)′ + p = 0, (B.54a)
(−N sinϑ + V cosϑ)′ + q = 0, (B.54b)
M′ − (1 + ϵ) V + γ N = 0. (B.54c)

It should be noted that the extension ϵ must be kept in the terms of (1 + ϵ) even when small strains can be
assumed. Except soft materials such as rubber, this extension ϵ remains quite small when compared with other
strain measures. But, if you neglect ϵ in the kinematics, the resulting equations become identical with those of the
inextensible beam theory formulated before; i.e. the Elastica. Therefore, ϵ in Eqs.(B.53a) and (B.53b) cannot be
neglected, while ϵ in Eqs.(B.53e) and (B.54c) can be ignored under the assumption of small strain to obtain

γ =
V

GktA + N
, M′ − V + γ N = 0. (B.55a, b)

This version is hereafter called the ‘small-extension approximation of the first order model’.
For the second order model, Eqs.(B.53e) and (B.55a) must be replaced by Eq.(B.52).
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B.3.4 Buckling Load
Solutions prior to the buckling of a cantilever Timoshenko beam are given by

u = − P
EA

x, w = 0, ϑ = 0, ϵ = − P
EA

, γ = 0, N = −P, V = 0, M = 0.

Similarly to the process shown for the Bernoulli-Euler beam in Sec. B.2.4, the governing equations are linearized
in terms of perturbations (terms with ∆) near the trivial solution above. The obtained governing equations form an
eigenvalue problem, and the buckling load Pcr of the first order model can be obtained from an implicit third order
algebraic equation [32] as

π2

4
=

ζ
(
1 − β2 ζ

)2

1 − (
β2 + αt

)
ζ
. (B.56)

We call this equation Iwakuma’s buckling formula2 only in this textbook. Parameters used are defined by

ζ ≡ Pcr ℓ
2

EI
, β ≡ 1

λ
, (B.57a, b)

where β is an inverse of the slenderness ratio λ and is called the thickness parameter, and αt is the parameter
defined by Eq.(A.15) representing the effect of the shear deformation. Application of the assumption of the small-
extension to the formula above yields the buckling load in an explicit formula as

ζ =
π2/4

1 + αt π2/4
(B.58)

which coincides with the so-called Engesser’s formula.
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Fig. B.2 Comparison of buckling loads

On the other hand, the second order model with Eq.(B.52)
in place of Eq.(B.51c) yields the buckling load as

ζ =
1 −

√
1 − π2 (

β2 − αt
)

2
(
β2 − αt

) (B.59)

which is introduced in the reference [79] as a buckling load of
a helical spring in which the shrinkage before the buckling is
taken into account. Furthermore, the small-extension assump-
tion leads to

ζ =

√
1 + αt π2 − 1

2αt
(B.60)

which is the same as the so-called modified Engesser’s for-
mula. Fig. B.2 shows differences between these buckling
loads of rather thick columns. The cross-section is a rectan-
gular shape with its width 10 mm and height 160 mm, and the
buckling loads with respect to the strong axis is plotted. Pois-
son’s ratio is set at ν = 1/3.

B.4 Beam-Column Theory in Small Displacement

B.4.1 Linearization of Finite Displacement Theory
Neglecting some parts of nonlinear terms in the theory of the Bernoulli-Euler beam, we can derive the beam-
column theory introduced in Chap. 5. First, ignoring a nonlinear term with respect to the derivative of the axial
displacement in the definition of the extension of Eq.(B.11b), we can approximate it as

ϵ ≃ u′ +
1
2

(
w′

)2 (B.61)

which is equal to Eq.(5.31b). Moreover, all the nonlinear terms in the curvature defined by Eq.(B.17c) are neglected
to obtain

κ ≃ −w′′. (B.62)
2 We have not found this formula in any references. If you find it, please let us know.
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The relations between the stress resultants and the deformation are given by Eq.(B.30), and the internal virtual
work is expressed by Eq.(B.24). Neglecting the axial distributed load p, we can write the virtual work equation as∫

x
(N δϵ + M δκ) dx −

∫
x

q δw dx − {
F δu + S δw +C δ(−w′)} ∣∣∣∣

x=0,ℓ
= 0. (B.63)

The variational principle using Eq.(B.63) leads to the equilibrium equations as

N′ = 0, (B.64a)
(N w′ + M′)′ + q = 0, (B.64b)

which are identical with those of Eq.(5.26). And, the corresponding boundary conditions are specified by

u = given or ni N = Fi, (B.65a)
w = given or ni

(
N w′ + M′

)
= Si, (B.65b)

−w′ = given or ni M = Ci, (B.65c)

which are also the same as those in Eq.(5.27).
As has been stated in Chap. 5 for a typical column, if the beam-column is subjected to compressive forces at

the ends, the equilibrium Eq.(B.64a) to the axial direction can be easily solved with the boundary condition of
Eq.(B.65a) to obtain

N = −P = const.

which has been shown in Eq.(5.28). Therefore, the equilibrium equation with respect to bending is expressed by

−EI w′′′′ − Pw′′ + q = 0

which is the same as Eq.(5.32), and the corresponding boundary conditions coincide with those of Eq.(5.33).
Namely, the beam-column theory is an approximate linearized theory using only one nonlinear term of the slope
in the relation between the extension and the displacement gradients.

B.4.2 Stiffness Equation
(1) Bernoulli-Euler Beam

Putting the relations between the deformation and the displacement in Eqs.(B.61) and (B.62) and the relations
between the stress resultants and the deformation in Eq.(B.30) into the virtual work Eq.(B.63), we can formulate
a stiffness equation of FEM introduced in Chap. 4 by assuming appropriate displacement functions. Since only
a first order derivative of the displacement to the axial direction appears in the internal virtual work, the first
order polynomial in Eq.(4.16) can be used for its displacement function. Similarly, the trial functions for the
deflection can be assumed by the third order polynomial of Eq.(4.21) used in the infinitesimal displacement model.
Substitution of these displacement functions into the virtual work equation results in a nonlinear stiffness equation
expressed by {

Fi

}
=

(
Ki j

){
u j

}
+

(
Ki jk

){
u j

}{
uk

}
+

(
Ki jkl

){
u j

}{
uk

}{
ul

}
, (B.66)

where two vectors are defined by{
ui

}
≡ ⌊u1/ℓ w1/ℓ − w′1 u2/ℓ w2/ℓ − w′2⌋t,

{
Fi

}
≡ ⌊F1/Eℓ2 S1/Eℓ2 C1/Eℓ3 F2/Eℓ2 S2/Eℓ2 C2/Eℓ3⌋t,

(B.67a, b)
and the distributed loads are neglected. All the stiffness matrices

(
Ki j

)
etc. are defined by symmetric matrices,

and non-zero elements are summarized in Table B.1∼B.3. The matrix
(

Ki j

)
of the linear term is identical with

that of Eq.(4.39) in infinitesimal displacements.
It is true that Eq.(B.66) can be directly solved numerically by a computer program, but we here try to transform

the second nonlinear term into a quasi-linear form such as(
Ki jk

){
u j

}{
uk

}
→

(
Kgi j

){
u j

}
.
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Table B.1 Non-zero elements of
(
Ki j

)
11 A/ℓ2 14 −A/ℓ2 44 A/ℓ2 22 12I/ℓ4

23 −6I/ℓ4 25 −12I/ℓ4 26 −6I/ℓ4 33 4I/ℓ4

35 6I/ℓ4 36 2I/ℓ4 55 12I/ℓ4 56 6I/ℓ4

66 4I/ℓ4

Table B.2 Non-zero elements of
(
K̃i jk

)
:
(
Ki jk

)
=

A
2ℓ2

(
K̃i jk

)
122 −6/5 123 1/10 125 6/5 126 1/10
133 −2/15 135 −1/10 136 1/30 155 −6/5
156 −1/10 166 −2/15 224 6/5 234 −1/10
245 −6/5 246 −1/10 334 2/15 345 1/10
346 −1/30 455 6/5 456 1/10 466 2/15

Table B.3 Non-zero elements of
(
K̃i jkl

)
:
(
Ki jkl

)
=

A
2ℓ2

(
K̃i jkl

)
2222 72/35 2223 −9/35 2225 −72/35 2226 −9/35
2233 3/35 2235 9/35 2255 72/35 2256 9/35
2266 3/35 2333 1/140 2335 −3/35 2336 −1/140
2355 −9/35 2366 −1/140 2555 −72/35 2556 −9/35
2566 −3/35 2666 1/140 3333 2/35 3335 −1/140
3336 −1/140 3355 3/35 3356 1/140 3366 1/210
3555 9/35 3566 1/140 3666 −1/140 5555 72/35
5556 9/35 5566 3/35 5666 1/140 6666 2/35

Of course, this matrix
(

Kgi j

)
is not constant but a function of the elements of the vector

{
um

}
. First, a symmetric

expression can be obtained as

(
Kgi j

)
=

1
2



0 −c/Eℓ2 a/Eℓ2 0 c/Eℓ2 b/Eℓ2

6N0/5Eℓ2 −N0/10Eℓ2 c/Eℓ2 −6N0/5Eℓ2 −N0/10Eℓ2

2N0/15Eℓ2 −a/Eℓ2 N0/10Eℓ2 −N0/30Eℓ2

0 −c/Eℓ2 −b/Eℓ2

6N0/5Eℓ2 N0/10Eℓ2

Symm. 2N0/15Eℓ2


, (B.68)

where

N0 ≡ EA
(u2 − u1

ℓ

)
, a ≡ EA

30

(
−4w′1 + w

′
2 − 3

w2 − w1

ℓ

)
, (B.69a, b)

b ≡ EA
30

(
w′1 − 4w′2 − 3

w2 − w1

ℓ

)
, c ≡ EA

10

(
−w′1 − w′2 − 12

w2 − w1

ℓ

)
, (B.69c, d)

and N0 approximately represents the axial force of this finite element. Or, another non-symmetric expression is
possible and is given by

(
Kgi j

)
=



0 −c/2Eℓ2 a/2Eℓ2 0 c/2Eℓ2 b/2Eℓ2

0 6N0/5Eℓ2 −N0/10Eℓ2 0 −6N0/5Eℓ2 −N0/10Eℓ2

0 −N0/10Eℓ2 2N0/15Eℓ2 0 N0/10Eℓ2 −N0/30Eℓ2

0 c/2Eℓ2 −a/2Eℓ2 0 −c/2Eℓ2 −b/2Eℓ2

0 −6N0/5Eℓ2 N0/10Eℓ2 0 6N0/5Eℓ2 N0/10Eℓ2

0 −N0/10Eℓ2 −N0/30Eℓ2 0 N0/10Eℓ2 2N0/15Eℓ2


. (B.70)
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It should be noted that this matrix excluding the first and fourth rows is the same as the geometric stiffness matrix
defined by Eq.(5.64) when P is replaced3 by N0.

The first and fourth rows of Eq.(B.70) ignored in the derivation above do not have the axial displacements u1
and u2 and include only nonlinear terms of the deflection w and the slope w′. Also, the third nonlinear term of
Eq.(B.66) has the same characteristics. Therefore, as long as behaviors only near the buckling point are examined,
Eq.(5.64) can be used as the first order approximation. Incidentally, an ordinary derivation of the geometric stiffness
matrix of Eq.(5.64) can be possible as follows. First, substitution of Eq.(B.61) into the virtual work Eq.(B.63)
results in ∫

x
(N δϵ + M δκ) dx =

∫
x

(
N δu′ + Nw′ δw′ + M δκ

)
dx.

Then, approximating N in the first term of the integrand by N ≃ EAu′, and replacing N in the second term by the
applied axial force −P, we can rewrite it as∫

x

(
EAu′ δu′ − Pw′ δw′ + EIw′′ δw′′

)
dx, (B.71)

where the relation between the bending moment and the deflection is substituted. Finally, assuming appropriate
displacement functions for u and w, we can obtain the geometric stiffness matrix of Eq.(5.64).

(2) Timoshenko Beam

Similarly, the geometric stiffness matrix of the Timoshenko beam can be evaluated from a linearized virtual work
equation [24]. The internal virtual work term subjected to an applied compression P is given by∫ ℓ

0

(
EI ϑ′ δϑ′ − Pw′ δw′ +GktA γ δγ

)
dx. (B.72)

Displacement functions are selected by the same scheme explained in App. A. Denoting the applied force vector
and the displacement vector by{

f
}
≡

⌊
S1ℓ

2/EI C1ℓ/EI S2ℓ
2/EI C2ℓ/EI

⌋t
,

{
u
}
≡ ⌊w1/ℓ ϑ1 w2/ℓ ϑ2⌋t , (B.73a, b)

we obtain an element stiffness equation as{
f
}
=

((
Kl

)
− Pℓ2

EI

(
Knl

)) {
u
}
, (B.74)

where ℓ is the length of one finite element. The matrix
(

Knl
)

represents the geometric stiffness matrix. Explicit
expressions of these matrices are given by

(
Kl

)
=

1
∆0


12 −6 −12 −6

4 + 12αt 6 2 − 12αt
12 6

Symm. 4 + 12αt

 ,
(

Knl
)
=

1
∆2

0


6∆1/5 −1/10 −6∆1/5 −1/10

2/15 + ∆2 1/10 −1/30 − ∆2
6∆1/5 1/10

Symm. 2/15 + ∆2,

 ,
(B.75a, b)

where
∆0 ≡ 1 + 12αt, ∆1 ≡ 1 + 10∆2, ∆2 ≡ 2αt + 12α2

t. (B.76a, b, c)

This model corresponds to the first order model with the small-extension approximation explained later on.

B.5 Thin-Walled Cylindrical Pipe with Sectional Deformation

B.5.1 Kinematics
We here include this section in order to introduce a method4 to improve and modify beam theories by the Vlasov-
type scheme, where an effect of cross-sectional distortion is taken into account through the virtual work equation.

3 A negative sign of Eq.(5.64) appears because P is defined positive in compression.
4 Since this section is a copy of a blurred blueprint of the graduation thesis by the first author, it may have many mistakes.
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When a thin-walled cylindrical pipe is subjected to bending, the circular cross-section may deform into an elliptic
shape as has been shown in Fig. 5.15. Let the x-axis lie through the center of the circular cross-section, and define
the s-axis along the mid-wall of the section. The n-axis is oriented toward the center perpendicular to the x- and
s-axes. The radius of the mid-wall is denoted by r0, and the thickness is t, where the radius-thickness ratio r0/t is
assumed to be significantly large meaning a very thin-walled pipe. Then the polar coordinate system (r, ψ) on the
cross-section can be related to the coordinates introduced above by r = r0 − n and ds = r0 dψ. This pipe deforms
only within the z-x plane. First of all, the strain field as a beam is assumed by

Ezx = 0, Ezz = 0. (B.77a, b)

As for the sectional deformation, the stress field can be assumed by

Snx = 0, Ssn = 0, Snn = 0, S ∗ss = 0,
∮

s
S ∗sx ds = 0, (B.78a, b, c, d, e)

where the superscript ∗ indicates quantities on the mid-wall. Therefore the corresponding strain field can be
approximately assumed through the Hooke law as

Enx = 0, Esn = 0, Enn = 0, E∗ss = 0,
∮

s
E∗sx ds = 0. (B.79a, b, c, d, e)

Then the displacement field corresponding to the strain field above can be given by

u = u0 +
(
ξ sinψ + η cosψ − r cosψ

)
sin θ + ū cos θ, v = ξ cosψ − η sinψ, (B.80a, b)

w = w0 + r cosψ +
(
ξ sinψ + η cosψ − r cosψ

)
cos θ − ū sin θ, (B.80c)

where the superposed bar indicates displacements relating to the sectional deformation, and the s, n and x com-
ponents are denoted by ξ, η and ū respectively. Also, θ represents the slope of the beam, and since no shear
deformation is taken into account, we have a relation as

tan θ = −
w′0

1 + u′0
. (B.81)

Substitution of these displacement field into the assumption of the strain field in Eq.(B.79) leads to relations as

ξ = ξ
∗
(ψ, x) − n cosα1 sinα, η = η∗(ψ, x) + n (cosα1 cosα − 1) , ū = −n sinα1, (B.82a, b, c)

ξ̇∗ = η∗, tanα(ψ, x) =
ξ
∗
+ η̇∗

r0 + ξ̇∗ − η∗
, tanα1(ψ, x) =

η∗′ cosα − ξ∗′ sinα
√
g0 + θ′

(
ξ sinψ + η cosψ − r cosψ

) , (B.82d, e, f)

where the superposed dot represents the differentiation with respect to ψ, and

g0 ≡ (1 + u′0)2 + (w′0)2. (B.83)

The angles α and α1 denote the inclinations of the cross-section due to the sectional deformation.
We further assume that the magnitude of the sectional deformation is much smaller than that of the global

kinematics of the beam, and here linearize quantities relating to the former in comparison with the magnitude of
the latter. Then, we assume a pattern of the sectional deformation by some given functions using the scheme of the
separation of variables as

ξ
∗
= r0 f (x)Φ1(ψ), η∗ = r0 f (x)Φ2(ψ). (B.84a, b)

From a mechanical consideration, the major part of the function Φ2 may be cos 2ψ. Substitution of this function
into Eq.(B.79) yields the function Φ1 as

Φ1 =
1
2

sin 2ψ, Φ2 = cos 2ψ, (B.85a, b)

i.e. the section becomes elliptic in shape. Neglecting higher order terms of f , we can approximate as follows;

tanα ≃ sinα ≃ f ϕ, tanα1 ≃ sinα1 ≃ r0 f ′Φ2, cosα ≃ 1, cosα1 ≃ 1, ϕ ≡ Φ1 + Φ̇2. (B.86a, b, c, d, e)
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Hence, the displacement field can be expressed by

u(x, r, ψ) = u0(x) + Z sin θ(x) − n r0 f ′(x)Φ2 cos θ(x), (B.87a)
w(x, r, ψ) = w0(x) + r cosψ + Z cos θ(x) + n r0 f ′(x)Φ2 sin θ(x), (B.87b)
ξ(x, r, ψ) = w0(x) sinψ + f (x) (r0Φ1 − n ϕ) + Z sinψ {cos θ(x) − 1} + n r0 f ′(x)Φ2 sinψ sin θ(x), (B.87c)
η(x, r, ψ) = w0(x) cosψ + r0 f (x)Φ2 + Z cosψ {cos θ(x) − 1} + n r0 f ′(x)Φ2 cosψ sin θ(x), (B.87d)

where Z defines a substantial distance of a particle at z from the x-axis; i.e. {z + (z component of the displacement
due to sectional deformation)} as

Z = ξ sinψ + η cosψ − r cosψ = −r cosψ + f Z f , Z f ≡ (r0Φ1 − n ϕ) sinψ + r0Φ2 cosψ. (B.88a, b)

When there exists no cross-sectional deformation, the functions u0 and w0 are the components of the displacement
of the centroid. Hence, the unknown function f (x) represents the freedom due to sectional deformation added to
the elementary beam theory.

B.5.2 Governing Equation
Substitution of these kinematics into the virtual work equation in a polar coordinate system yields equilibrium
equations as an Euler equation and boundary conditions. The equilibrium equations are obtained as

Pss + N f + M′′f − M′sx − mZ f cos θ − mX f sin θ −
(
MZ f sin θ

)′
+

(
MX f cos θ

)′
= 0, (B.89a)(

N cos θ + M′XZ sin θ
)′
+ px +

{
sin θ

(
−mZZ sin θ + mXZ cos θ − f ′ MZ f cos θ − f ′ MX f sin θ

)}′
= 0, (B.89b)(−N sin θ + M′XZ cos θ

)′
+ pz +

{
cos θ

(
−mZZ sin θ + mXZ cos θ − f ′ MZ f cos θ − f ′ MX f sin θ

)}′
= 0, (B.89c)

where the first equation represents an equilibrium equation relating to the sectional deformation. The correspond-
ing boundary conditions are expressed by

f = given or (B.90a)

Msx − M′f + MZ f sin θ − MX f cos θ = ni

{
M̄Z f (cos θ − 1) + M̄X f sin θ + M̄s f + M̄n f

}
,

f ′ = given or M f = ni

(
M̄ f cos θ − M̄ f f sin θ

)
, (B.90b)

u0 = given or (B.90c)

N cos θ + M′XZ sin θ + sin θ
(
−mZZ sin θ + mXZ cos θ − f ′ MZ f cos θ − f ′ MX f sin θ

)
= ni N̄,

w0 = given or (B.90d)

−N sin θ + M′XZ cos θ + cos θ
(
−mZZ sin θ + mXZ cos θ − f ′ MZ f cos θ − f ′ MX f sin θ

)
= ni V̄ ,

θ = given or MXZ = ni

(
M̄XZ cos θ − M̄ZZ sin θ − f ′ M̄ f sin θ − f ′ M̄ f f cos θ

)
, (B.90e)

where the first two equations are additional conditions due to the sectional deformation.
Stress resultants are defined as follows;

N ≡
∫

A
σ dA, MXZ ≡

∫
A
σZ dA, N f ≡

∫
A
σ

(
θ′ Z f

)
dA, M f ≡

∫
A
σ (−n r0Φ2) dA, (B.91a, b, c, d)

Pss ≡
∫

A
Sss

(
−n

r
ϕ̇
)

dA, Msx ≡
∫

A
Ssx

{
r0Φ1 − n

(
ϕ̇ +

r0

r
Φ̇2

)}
dA. (B.91e, f)

Also, when the ordinary body forces are given by Xx and Xz and the surface forces at the ends are specified by Fs,
Fn and Fx, we can define generalized applied forces as follows;

pz ≡
∫

A
Xz dA, px ≡

∫
A

Xx dA, mzz ≡
∫

A
Xz z dA, mxz ≡

∫
A

Xx z dA, mZ f ≡
∫

A
Xz Z f dA,

mX f ≡
∫

A
Xx Z f dA, mZZ ≡

∫
A

Xz Z dA = mzz + f mZ f , mXZ ≡
∫

A
Xx Z dA = mxz + f mXd,

MZ f ≡
∫

A
Xz (−n r0Φ2) dA, MX f ≡

∫
A

Xx (−n r0Φ2) dA, (B.92)
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N̄ ≡
∫

A
Fx dA, M̄xz ≡

∫
A

Fx z dA, M̄X f ≡
∫

A
Fx Z f dA, M̄XZ ≡

∫
A

Fx Z dA = M̄xz + f M̄X f ,

M̄ f ≡
∫

A
Fx (−n r0Φ2) dA, V̄ ≡

∫
A

(Fs sinψ + Fn cosψ) dA,

M̄zz ≡
∫

A
(Fs sinψ + Fn cosψ) z dA, M̄Z f ≡

∫
A

(Fs sinψ + Fn cosψ) Z f dA,

M̄ZZ ≡
∫

A
(Fs sinψ + Fn cosψ) Z dA = M̄zz + f M̄Z f , M̄ f f ≡

∫
A

(Fs sinψ + Fn cosψ) (−n r0Φ2) dA,

M̄s f ≡
∫

A
Fs (r0Φ1 − n ϕ) dA, M̄n f ≡

∫
A

Fn (r0Φ2) dA.

B.5.3 Stress Resultants in terms of Displacement

First of all, the axial extension e is approximated under the assumption of small strain as

e ≃ ϵ + Z θ′ − n r0Φ2 f ′′, ϵ ≡ u′0 +
1
2

{(
u′0

)2
+

(
w′0

)2
}
. (B.93a, b)

Then one type of stress-strain relations can be given by

σ = E e, Sss = E Ess, Ess = − f
n
r0
ϕ̇, Ssx = 2G Esx, 2Esx = r0 f ′Φ1 − n f ′

(
ϕ +

r0

r
Φ̇2

)
, (B.94a, b, c, d, e)

where E is Young’s modulus, and G is the shear modulus. Substituting these relations into the definitions of the
stress resultants, we can express them as

N = EA
(
u′0 +

1
2

{(
u′0

)2
+

(
w′0

)2
})
, A ≡

∫
A

dA = 2π r0 t, (B.95a, b)

MXZ = EIZZ θ
′, IZZ ≡

∫
A

Z2 dA = π r3
0 t − f

3π r3
0 t

2
, (B.95c, d)

Pss = EA1 f , A1 ≡
∫

A

(
−n

r
ϕ̇
)2

dA =
3π t3

4r0
, (B.95e, f)

Msx = GIs f ′, Is ≡
∫

A

{
r0Φ1 − n

(
ϕ +

r0

r
Φ̇2

)}2
dA =

π

4
r3

0 t, (B.95g, h)

N f = EI1
(
θ′
)2 , I1 ≡

∫
A

Z f Z dA = −
3π r3

0 t
4
+ f

5π r3
0 t

8
, (B.95i, j)

M f = EI2 f ′′, I2 ≡
∫

A
(−n r0Φ2)2 dA =

π r3
0 t3

12
. (B.95k, l)

Eventually, the field equation for f becomes a fourth order ordinary differential equation. And, using the
virtual work equation, we can also construct a stiffness equation by introduction of an appropriate trial function for
f which may be the same as that for w.

B.5.4 Stability Problem

As an example of application, a simply supported beam subjected to uniform bending moment is examined. In or-
der to clarify the effect of sectional deformation, no diaphragm is attached. The bending moment and the sectional
deformation become uniform along the x-axis because of the uniform bending action. Therefore, the equilibrium
Eq.(B.89a) becomes 6 + 5

κ2 r4
0

t2

 f = 6
κ2 r4

0

t2 , (B.96)

where κ is a curvature (θ′) of the beam axis. Defining non-dimensional curvature and applied moment by

k̄ ≡
κ r2

0

t
, m̄ ≡ M̄

π E r0 t2 , (B.97a, b)
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we can derive an expression between the applied moment and the sectional deformation as

m̄ = k̄
(
1 − 3 f

2

)
(B.98)

from Eq.(B.95). Hence, Eqs.(B.96) and (B.98) yield a relation between the applied moment and the curvature as

m̄ = k̄
(
1 − 9k̄2

6 + 5k̄2

)
, (B.99)

and the results are plotted in Fig. 5.15 and Fig. B.3 (1st order).
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Fig. B.3 Simple beam with sectional deformation
subjected to uniform bending

There reported an analysis [64] of a ring flattened by
bending, in which the pattern of deformation of the ring
was assumed as

ξ
∗

r0
=

k0

2
+

11k2
0

6

 sin 2ψ

+
3
16

k2
0 sin 4ψ, (B.100a)

η∗

r0
=

k0 +
2k2

0

3

 cos 2ψ

+
3
16

k2
0 (cos 4ψ + 3) , (B.100b)

k0 ≡
(
1 − ν2

)
k̄2, (B.100c)

including nonlinear terms with respect to the curvature k̄.
Comparison with this expression and Eq.(B.84) shows that
the first order terms are identical with each other.

Table B.4 Maximum applied moment of flattened cylinder

Present scheme Reissner’s results
1st order incl. 2nd order incl. 3rd order Numerical

m̄max 0.351 0.296 0.289 0.307
k̄cr 0.576 0.437 0.416 0.441

Referring to Eq.(B.100), and replac-
ing k0 by the unknown parameter f of
the present approach, we can assume an
alternative nonlinear pattern as

ξ
∗

r0
=

1
2

f sin 2ψ +
3
16

f 2 sin 4ψ,

η∗

r0
= f cos 2ψ +

3
16

f 2 (cos 4ψ + 3) .

Then, formulating the governing equations by the principle of the virtual work, we obtain the sectional deformation
as

f =
16

45k̄2

 k̄2

2
− 3

4
+

√
9
16
− 3k̄2

4
+

143k̄4

32

 , (B.101)

and a relation between the bending moment and the sectional deformation becomes

m̄ = k̄
(
1 − 3 f

2
− 1

2
f 2

)
. (B.102)

These Eqs.(B.101) and (B.102) results in a softer response than that by Eq.(B.99). The result is shown by a curve
with ‘2nd order’ in Fig. B.3, and comparison with other results is summarized in Table B.4.

B.6 Numerical Analysis

B.6.1 Two-Point Boundary-Value Problems
When a beam system is stated as a two-point boundary value problem, a direct numerical integration of the differ-
ential equations can be used even in nonlinear cases. First, setting specified boundary conditions at the left end,
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and further assuming approximate values for the other conditions, we can solve the differential equations towards
the right end. Of course, the values obtained at the right end do not satisfy any boundary conditions there. Next,
letting the differences between the obtained values and the specified values at the right end be specified boundary
values there, and solving the corresponding adjoint system of the differential equations from the right to the left,
we can evaluate corrections to be given for the boundary values at the left end. Repeating this process, we can
solve the two-point boundary value problem. Precise procedure called the ‘method of adjoints’ can be found in the
reference [66]. The systems of the first order ordinary differential equations are enumerated below and summarized
in Table B.5.

Let ℓ denote the length of the beam, and the following non-dimensional functions and variable are defined as

z1 ≡
(N cosϑ + V sinϑ) ℓ2

EI
, z2 ≡

(−N sinϑ + V cosϑ) ℓ2

EI
, (B.103a, b)

z3 ≡
M ℓ

EI
, z4 ≡

u
ℓ
, z5 ≡

w

ℓ
, z6 ≡ ϑ, ˙( ) ≡ d( )

d (x/ℓ)
. (B.103c, d, e, f, g)

Then, the differential equations of the second order model of the extensible beam can be written as

ż1 = −q1, (B.104a)
ż2 = −q2, (B.104b)
ż3 =

{
1 + β2 (

1 − α′t
)
y1

}
y2, (B.104c)

ż4 =
(
1 + β2 y1

)
cos z6 + α

′
t β

2 y2 sin z6 − 1, (B.104d)

ż5 = −
(
1 + β2 y1

)
sin z6 + α

′
t β

2 y2 cos z6, (B.104e)
ż6 = z3, (B.104f)

where

α′t ≡
E

ktG
, y1 ≡ z1 cos z6 − z2 sin z6, y2 ≡ z1 sin z6 + z2 cos z6, q1 ≡

p ℓ3

EI
, q2 ≡

q ℓ3

EI
, (B.105a, b, c, d, e)

and α′t is a modified parameter of αt. On the other hand, for the first order model, three equations of the differential
equations above must be replaced by the following equations;

ż3 = y2
1 + β2 y1

1 +
α′t β

2 y1

1 + β2 y1

, ż4 =
(
1 + β2 y1

)
cos z6 +

α′t β
2 y2 sin z6

1 +
α′t β

2 y1

1 + β2 y1

− 1, (B.106a, b)

ż5 = −
(
1 + β2 y1

)
sin z6 +

α′t β
2 y2 cos z6

1 +
α′t β

2 y1

1 + β2 y1

. (B.106c)

Furthermore, when the extension is neglected as a small quantity, Eq.(B.104c) of the second order model must
be replaced by

ż3 =
(
1 − α′t β2 y1

)
y2, (B.107)

while, for the first order model, three equations of Eq.(B.106) must be replaced by

ż3 =
y2

1 + α′t β2 y1
, ż4 =

(
1 + β2 y1

)
cos z6 +

α′t β
2 y2 sin z6

1 + α′t β2 y1
− 1, (B.108a, b)

ż5 = −
(
1 + β2 y1

)
sin z6 +

α′t β
2 y2 cos z6

1 + α′t β2 y1
. (B.108c)

Solutions by the direct integration are used for comparison with the FEM solutions in the reference [32].

B.6.2 Finite Element Approach in Finite Displacement
(1) A Principle to take into account Finite Rotation under Infinitesimal Strain Condition

We here introduce a finite element [35] to handle finite rotation precisely to some extent within the framework of
elasticity. This scheme utilizes the polar decomposition theorem [48] represented by Eq.(10.17) which states that
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an arbitrary deformation can be expressed by a product of a finite rotation and an essential deformation (strain).
Therefore, as long as the deformation is small enough, an essential elastic deformation of a slender body is also very
small when a finite rotation component is extracted from a global large displacement. Then, a stiffness equation
can be formulated as follows within the framework of this principle.

Look at an arbitrary finite element in a deformed state, and set a local coordinate system in which x-axis lies
tangential to the beam axis at the left node in the current state, and other two axes are defined on the cross-section
at the node. Then, the shorter the finite element is, the smaller the relative displacement and rotation of the right
node to those of the left node become. Therefore, when a local stiffness equation is constructed in terms of the
relative displacement and rotation, it can be approximately defined by the stiffness equation of the infinitesimal
displacement model. This concept utilizing the polar decomposition theorem can be illustrated in the figure of
the reference [35]. Denoting a typical length of the structure by L, we define the external force vector and the
corresponding displacement vector at the nodes of the finite element by

f i ≡
⌊

FiL2/EI SiL2/EI CiL/EI
⌋t
, di ≡ ⌊ui/L wi/L ϑi⌋t , (B.109a, b)

and the element stiffness equation of a beam in finite displacements can be approximately given by

f 1 = T k1 Tt {d2 − d1 − D} , f 2 = T k2 Tt {d2 − d1 − D} . (B.110a, b)

The vector in the right-hand side represents the relative displacement vector of the right node to the total displace-
ments of the left node. And, the matrix T is a kind of coordinate transformation matrix in terms of the rotation ϑ1
of the section at the left node, and the vector D represents a rigid-body displacement of the element defined by

T ≡

 cosϑ1 sinϑ1 0
− sinϑ1 cosϑ1 0

0 0 1

 , D ≡
⌊
cosϑ1 − 1

ξ

− sinϑ1

ξ
0
⌋t
, ξ ≡ L

ℓ
, (B.111a, b, c)

where ℓ is the length of the finite element. As for the stiffness matrix, for example, one of the Timoshenko beam
models in Eq.(B.75) may be employed as follows, although more precise matrices of the two kinds of approximate
models are shown in Sec. B.6.2 (3). Decomposing the part of geometric stiffness as

ki = kli + z0 knli , z0 ≡
(axial force)L2

EI
=

{(
u2 − u1

L
− cosϑ1 − 1

ξ

)
cosϑ1 −

(
w2 − w1

L
+

sinϑ1

ξ

)
sinϑ1

}
ξ

β2 ,

(B.112a, b)
we can write the linear (L) and nonlinear (NL) parts as

kl1 ≡



− ξ
β2 0 0

0 −12ξ3

∆0
−6ξ2

∆0

0
6ξ2

∆0

(2 − 12ϕ) ξ
∆0


, knl1 ≡



0 0 0

0 −6∆1ξ

5∆2
0

− 1
10∆2

0

0
1

10∆2
0

−1/30 − ∆2

ξ∆2
0


, (B.113a, b)

kl2 ≡



ξ

β2 0 0

12ξ3

∆0

6ξ2

∆0

Symm.
(4 + 12ϕ) ξ
∆0


, knl2 ≡



0 0 0
6∆1ξ

5∆2
0

1
10∆2

0

Symm.
2/15 + ∆2

ξ∆2
0


, (B.113c, d)

where

β ≡
√

I/A
L

, α ≡ E
Gkt

, ϕ ≡ αβ2ξ2, ∆0 ≡ 1 + 12ϕ, ∆1 ≡ 1 + 10∆2, ∆2 ≡ 2ϕ + 12ϕ2. (B.114a, b, c, d, e, f)

Then, the Newton-Raphson method may be employed to solve Eq.(B.110), in which the tangent stiffness kt can
be evaluated by differentiating Eq.(B.110) with respect to di to obtain

kt =

(
H11 H12 H13 + S1 H14 H15 H16
H21 H22 H23 + S2 H24 H25 H26

)
+

{
P1
P2

}
⌊− cosϑ1 sinϑ1 g cosϑ1 − sinϑ1 0⌋ , (B.115)
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Fig. B.4 Displacements of the crown of deep beam with hinged-fixed ends

where

Hi ≡ ⌊Hi1 Hi2 Hi3 Hi4 Hi5 Hi6⌋ = TkiTtC, Si ≡
(
QkiTt + TkiQt

)
(d2 − d1 − D) , (B.116a, b)

Pi ≡ ξTknli Tt (d2 − d1 − D) /β2, (B.116c)

C ≡

 −1 0 − sinϑ1/ξ 1 0 0
0 −1 − cosϑ1/ξ 0 1 0
0 0 −1 0 0 1

 , Q ≡

 sinϑ1 − cosϑ1 0
cosϑ1 sinϑ1 0

0 0 0

 , (B.116d, e)

g ≡ {(u2 − u1) /L − (cosϑ1 − 1) /ξ} sinϑ1 + {(w2 − w1) /L + sinϑ1/ξ} cosϑ1. (B.116f)

Suppose that an approximate solution at the (n)-th step is obtained, we can evaluate unbalanced force by Eq.(B.110),
and the (n + 1)-th step solution can be calculated using the tangent stiffness matrix in Eq.(B.115) as{

d1
d2

}(n+1)

=

{
d1
d2

}(n)

+

(
k(n)

t

)−1
{

f 1 −
{
Tk1Tt (d2 − d1 − D)

}(n)

f 2 −
{
Tk2Tt (d2 − d1 − D)

}(n)

}
. (B.117)

The vector in the second term of the right-hand side of this equation represents the unbalanced force at the (n)-th
step. Convergence can be controlled by a criterion such as∣∣∣d(n+1) − d(n)

∣∣∣∣∣∣d(n+1)
∣∣∣ < tolerance, d ≡

{
d1
d2

}
. (B.118a, b)

(2) Numerical Examples

Fig. B.4 shows a response of the structure examined in the reference [12]. Similarly, in Fig. B.5, several bifurcated
paths AA’ and BB’ of the shallow arch simulated in the reference [128], where the path BB’ is found by our
calculation. Although the tangent stiffness matrix is not symmetric, several eigenvalues of the matrix become
negative at the bifurcation points. Fig. B.6 simulates an out-of-plane behavior of a cable-stayed bridge, where
the applied force is kept pointed toward the fixed end and a small initial imperfection is introduced to trigger
the buckling. Figs. 5.13 and 5.14 in Sec. 5.3 show other results calculated by the same program. Figs. B.7 and
B.8 illustrate a large rotational displacement of a linked bar examined in an exercise of the reference [5], where
ℓ/√I/A = 1, 000, a/ℓ = 1/4 and e/a = 0.04016.

The program developed utilizes the skyline method explained in the reference [17] in order to save memory
size of storage for the matrices, and uses the arc-length method developed in the reference [128] to trace many
unstable responses stably. We install all the four approximate models formulated in Sec. B.3.4 and summarized
in Table B.55 in this program, and its FORTRAN source code with sample data can be downloaded through the
Internet from the URL given in the preface of this textbook.

5 Geometric matrices are not necessary for the Bernoulli-Euler beams. The extension ϵ in the kinematics cannot be neglected. Note that,
when all the extension ϵ are neglected, the models represent the inextensible theory (Elastica).



B.6. NUMERICAL ANALYSIS 531

0.05 0.1 0.15

−20

20

w

L

A

A’

B

B’

80 elements

L
√

I/A
= 100

PL2

EI

P

w

L

H

H
L
= 0.0858

O

Fig. B.5 Shallow arch

0 0.2 0.4
0

1

2

0 0.5

horizontal disp.

(vertical)/L

vertical disp.

three loads are P

PL2

EI

20 elements

(horizontal)/L
Fig. B.6 Column loaded toward its base

ℓ a H

P e

S1

F1

C1

P

P

(a)

(b)

(c)

Fig. B.7 Linked bar subjected to compression

−1 −0.5 0

0

10

20

Pℓ2

EI

U
ℓ

,
W
ℓ

PW

a

e

ℓ

U

U W

A BB’

U ≡ u(ℓ + a)
W ≡ w(ℓ)

Fig. B.8 Unstable response of link

(3) General Stiffness Matrices

We here introduce explicit expressions of the stiffness matrices in Eq.(B.112) for the two approximate models; i.e.
the first order (B) model and the second order (A) model. Their construction scheme can be found in the reference
[32], and they are approximate stiffness matrices in the linearized finite displacement theory; i.e. the beam-column
models. Letting f ≡ ⌊

f 1 f 2
⌋t, we decompose the matrix as follows;

f =
(
Kl + Knlm

)
d (m = A,B), Kl =

(
Kl1 Kl2
Kl2
t Kl3

)
, Knlm = z

(
mKnl1

mKnl2
mKnl2

t mKnl3

)
, (B.119a, b, c)

where the subscript ‘m’ is either ‘A’ or ‘B’ and distinguishes the two shearing constitutive models of the Timo-
shenko beam theory (Table B.5). Denoting the element length by L, we can write these stiffness matrices in finite
displacements explicitly as

Kl1 ≡



1
β2 0 0

0
12

(1 + ϵ)2∆
− 6

(1 + ϵ)∆

Symm.
4 + 12Ψ
∆


, Kl2 ≡



− 1
β2 0 0

0 − 12
(1 + ϵ)2∆

− 6
(1 + ϵ)∆

0
6

(1 + ϵ)∆
2 − 12Ψ
∆


,
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Table B.5 Several finite-displacement models: buckling formulae and stiffness matrices [( )′ ≡ d( )/dx]

extensible small-extension approximation

Bernoulli- Timoshenko beam Bernoulli- Timoshenko beam
Euler beam 2nd order (A) 1st order (B) Euler beam 2nd order (A) 1st order (B)

u′ = (1 + ϵ) cosϑ + γ sinϑ − 1, w′ = − (1 + ϵ) sinϑ + γ cosϑ, where ϵ , 0 only within this row
(N cosϑ + V sinϑ)′ + p = 0, (−N sinϑ + V cosϑ)′ + q = 0

M′ − V (1 + ϵ) + Nγ = 0 M′ − V + Nγ = 0
Moment equilibrium is rigorously satisfied. Moment equilibrium holds approximately.

N = EAϵ, M = EIϑ′

γ = 0 V = GktAγ V =
(
GktA +

N
1 + ϵ

)
γ γ = 0 V = GktAγ V = (GktA + N) γ

Eq.(B.32) Eq.(B.59) Eq.(B.56)
Eq.(B.33)

Euler
Eq.(B.60)

mod. Engesser
Eq.(B.58)
Engesser

Kl
(
+Knlb

)
Kl + Knla Kl + Knlb

Kl
(
+Knlb

)
ϵ = 0

Kl + Knla
ϵ = 0

Kl + Knlb
ϵ = 0

Kl3 ≡



1
β2 0 0

12
(1 + ϵ)2∆

6
(1 + ϵ)∆

Symm.
4 + 12Ψ
∆


, mKnl1 ≡



0 0 0
6∆m

1

5(1 + ϵ)∆2 −
∆m

4

10∆2

Symm.
(1 + ϵ)

(
2/15 + ∆

m
2

)
∆2


, (B.120)

mKnl2 ≡



0 0 0

0 −
6∆m

1

5(1 + ϵ)∆2 −
∆m

4

10∆2

0
∆m

4

10∆2

−(1 + ϵ)
(

1/30 + ∆
m
3

)
∆2


, mKnl3 ≡



0 0 0
6∆m

1

5(1 + ϵ)∆2

∆m
4

10∆2

Symm.
(1 + ϵ)

(
2/15 + ∆

m
2

)
∆2


,

where several non-dimensional parameters are defined by

∆ ≡ 1 + 12Ψ, Ψ ≡ αt

(1 + ϵ)2 , ∆m
1 ≡

{
1 + 20Ψ (m = A)
1 + 10∆m

2 (m = B) , (B.121)

∆m
2 ≡

{
2Ψ − 24Ψ2 (m = A)
2Ψ + 12Ψ2 (m = B) , ∆m

3 ≡
{

2Ψ + 48Ψ2 (m = A)
∆m

2 (m = B) , ∆m
4 ≡

{
1 − 720Ψ2 (m = A)
1 (m = B) .

Also, z and ϵ can be expressed by

z ≡ 1
β2

{(
u2 − u1

L
− cosϑ1 − 1

ξ

)
cosϑ1 −

(
w2 − w1

L
+

sinϑ1

ξ

)
sinϑ1

}
, ϵ = z β2. (B.122a, b)

For the Bernoulli-Euler beams, set αt = 0. The most precise solutions of beams can be obtained by the Model
‘B’ including the extension effects. For any problems in finite rotations, the stiffness matrices kl,nl1 and kl,nl2 in
Eq.(B.110) must be replaced by Kl,nl2 and mKl,nl3 respectively (several symbols must be also replaced; e.g. the
definition of L is different).
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Average Characteristics of Composites
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Fig. C.1 Materials with micro-structures and averaging

C.1 Materials with Micro-Structures
Composites such as Glass/Carbon-Fiber-Reinforced-Polymers (GFRP, CFRP), concretes and even crystalline met-
als like steel are not homogeneous, and have micro-structures made of different phases inside materials. For
example, concretes are composed of, at least, two different materials such as cement paste and aggregates which
have different Young’s moduli, E1 and E2. Rocks have many cracks while many fibers are distributed in FRP’s;
solid lines in the bottom-left figure of Fig. C.1 represent cracks in rocks or fibers in FRP’s. Soils are composed
of grains, air and water. Polycrystals are made of many randomly distributed single crystals which have different
orientations and shapes. In most practices of the civil engineering field, however, only the average behavior is
usually necessary to design structures, but still it is much better if we can take some effects of such microscopic
characteristics into account explicitly. If you use the Finite Element Method (FEM), it is possible to model such
micro-structures directly by using certain finite elements. But, since a huge number of elements are needed for that
purpose, it is not realistic to solve numerically a Boundary-Value-Problem (BVP) of complicated real structures
made of composites. On the other hand, if we can use some analytical estimates of average properties of com-
posites, the number of finite element needed can be significantly reduced. Such analytical approaches can be also
used to design the micro-structures such as material, orientation, shape and volume fraction of inhomogeneities in
composites. We here explain one of such analytical averaging1 methods.

1 Recently the term ‘homogenization’ is frequently used for such averaging estimates, because the word is employed in a famous contribution
[110] utilizing the singular perturbation method between microscopic and macroscopic variables. However, since the method is used
through implementation into a numerical approach, FEM, the word ‘averaging’ is used for analytical approaches in this textbook.
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Fig. C.2 Voigt and Reuss models

One of the simplest classical averaging methods is called the Voigt
model. Suppose that two kinds of springs with different spring constants,
E1 and E2, are connected parallel to each other as is shown in the left figure
of Fig. C.2, and an overall extension ϵ is applied. Then the total resistance
can be evaluated by

σ = (1 − f ) σ1 + f σ2, σ1 = E1 ϵ, σ2 = E2 ϵ, (C.1a, b, c)

where f expresses the ratio of the number of the second spring to the total
number of two springs. This relation can define an average spring constant
(corresponding to the average Young modulus) by

σ = E ϵ → E ≡ (1 − f ) E1 + f E2 (Voigt), (C.2a, b)

which is a simple volumetric average of the two Young’s moduli. On the other hand, when two springs are aligned
straight as is shown in the right figure of Fig. C.2, if an overall force σ is applied, the total extension becomes

ϵ = (1 − f ) ϵ1 + f ϵ2, ϵ1 =
σ

E1
, ϵ2 =

σ

E2
, (C.3a, b, c)

which yields another definition of the average Young modulus as

ϵ =
σ

E
→ E ≡

(
1 − f

E1
+

f
E2

)−1

(Reuss). (C.4a, b)

This is a volumetric average of the two compliances, and is called the Reuss model. Can readers accept these
averages of Young’s modulus? Well, then, how do you average the Poisson ratios?

These two estimates are at present known as the upper and lower bounds of the average Young modulus, and
most experimental data are found to lie between these bounds. However, since these bounds are not so close to
each other even when f remains small as can be seen in Fig. C.8, they cannot be used in practice and must be
improved. The most important factor missing in these averages is the mechanical interactions between the two
phases (springs) of composites. Furthermore, the geometric properties such as shapes and orientations of phases
(e.g. shape of aggregates in concretes) are not taken into account, so that some more sophisticated mechanical
consideration must be necessary in a microscopic sense. We here explain the formulation of averaging based on
the ‘Micromechanics’2 in the book by Mura [56]. For example, curves indexed by ‘Mori-Tanaka’ in Fig. C.8 are
such estimates called the ‘Mori-Tanaka average.’ In the same figure, the results (‘SC’) by Hill’s self-consistent
method [27] are also shown for comparison.

C.2 Inhomogeneity and Inclusion

C.2.1 Inhomogeneity and Eshelby Solution

Em

Ei
ϵ = const.

σ

σ

Ω Ω

Fig. C.3 the Eshelby solution

Consider a two-phase material containing an infinite number
of inhomogeneities randomly distributed in the matrix mate-
rial. All the inhomogeneities have the same shape and orien-
tation, and have material properties different from those of the
matrix. In order to estimate the mechanical field disturbed by
existence of the inhomogeneity, we examine a part surround-
ing one inhomogeneity occupying the region Ω illustrated in
the left figure of Fig. C.3. Both materials are assumed to be
isotropically elastic; the Young modulus of the matrix material
is Em, and its Poisson’s ratio is νm, while the Young modulus
of the inhomogeneity is Ei, and its Poisson’s ratio is νi. The
inhomogeneity has an ellipsoidal shape with three principal
radii, a1, a2 and a3.

As is shown in the right figure of Fig. C.3, when only one inhomogeneity is embedded in an infinite body
subjected to some applied force σ at infinity, Eshelby [18] found that the strain field inside inhomogeneity

2 The term ‘micro’ does not directly mean the size of 10−6 m, but implies microscopic mechanics between two regions with distributed
‘eigenstrains’ in a material. Thus ‘Micromechanics’ is a unique name originally designated by Prof. Mura.
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is uniform: i.e. ϵ = const. in Ω. This conclusion is valid only when the materials are isotropic elastic and
when the inhomogeneity has ellipsoidal shape. This famous finding suggests that the disturbed field due to
one inhomogeneity of two-phase composites becomes equivalent to the field of a homogeneous infinite body
with an ‘appropriate’ constant residual strain distributed only within the region Ω. Such a residual strain
is an inelastic strain just like thermal expansion, and is called ‘eigenstrain’ ϵ∗ in the book [56]. Mura calls the
region Ω with eigenstrain ‘inclustion,’ while the region of material different from the matrix material is called
‘inhomogeneity.’ However, in this textbook, we sometimes call the region of ‘inhomogeneity’ by ‘inclusion.’
The equivalent replacement of the inhomogeneity by an inclusion is called the ‘equivalent inclusion method’ [18]
explained later on.

C.2.2 Governing Equations
(1) Statement of Problem with One Inhomogeneity

Suppose that only one inhomogeneity occupies the region Ω in an infinite body D as is shown in the left figure of
Fig. C.4. The displacement u is related to the total strain ϵ as

ϵi j =
1
2

(
ui, j + u j,i

)
. (C.5)

In elastic problems, the constitutive relations of the two materials are expressed by Hooke’s law as

σi j = Cmi jkl ϵkl = Cmi jkl uk,l in D −Ω, σi j = Cii jkl ϵkl = Cii jkl uk,l in Ω, (C.6a, b)

where Cm and Ci are the elasticity tensors of the two materials. Incidentally, manipulation about the second
equality of both equations above is based on the relation given in Eq.(C.5) and the symmetry of elastic moduli as
Cki jkl = Cki jlk (k = m, i). The tensor can be explicitly expressed using the Lamé constans µk and λk as

Cki jkl = µk
(
δik δ jl + δil δ jk

)
+ λk δi j δkl, (k = m, i), (C.7)

where δi j is the Kronecker delta. Also, the Lamé constants are related to Young’s modulus and Poisson’s ratio as

µk =
Ek

2 (1 + νk)
, λk =

νk Ek
(1 + νk) (1 − 2νk)

, (k = m, i). (C.8a, b)

Without body forces, the equilibrium equations of force and moment are given by

σ ji, j = 0, σi j = σ ji → or σi j, j = 0. (C.9a, b, c)

Eq.(C.9c) is the result from substitution of Eq.(C.9b) into Eq.(C.9a). The corresponding boundary condition at
infinity is specified as

n j σ ji = fi at |x| → ∞, (C.10)

where n is a unit outer normal vector of the surface at infinity where the force f is applied. Also, the continuity
conditions of displacement u and surface traction (ν · σ) must hold on the interface ∂Ω, where ν is a unit outer
normal of each surface of the two phases.

Therefore, as can be easily imagined, consideration of the continuity condition on the interface ∂Ω makes the
solution procedure of such a two-phase body very complicated. Let the fields of stress and strain be decomposed
into a homogeneous one without any inhomogeneities and a disturbed one by the inhomogeneity as

σ(x) = σ0 + σd(x), ϵ(x) = ϵ0 + ϵd(x), σd(x)→ 0, ϵd(x)→ 0 as |x| → ∞, (C.11a, b, c, d)

where σd and ϵd represent the stress and strain disturbances due to the existence of the inhomogeneity, and σ0 is a
uniform stress field of the homogeneous body subjected to the applied force f at infinity.

(2) Inclusion Problem with Eigenstrain

We decompose the original problem into a part of homogeneous state of the body subjected to the applied force
and a part of disturbed state due to the inhomogeneity as is shown in the middle two figures of Fig. C.4. The
homogeneous state can be easily solved to obtain uniform fields of stress and strain as σ0 = Cm : ϵ0. As for the
disturbed state of the stress σd and strain ϵd, instead of solving the problem of a two-phase body, we solve an
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Ω

Cm

σ0, ϵ0 σ0, ϵ0

Original problem Homogeneous state

Ω

Cm

Disturbed state

Ω

Cm

Auxiliary problem

disturbed field

ϵd

− = =

ϵd

ϵd

Ci Cm
ϵ∗

Fig. C.4 Decomposition of the problem; inhomogeneity (Ci in Cm) is replaced by an inclusion (ϵ∗ in Cm)

auxiliary problem of a homogeneous body with one inclusion having some residual strain ϵ∗ as is shown in the
rightmost figure, on the basis of Eshelby’s finding mentioned above. Material all over the domain is homogeneous,
and its elastic modulus is Cm in this auxiliary problem. But, in the region Ω, there distributes a certain residual
strain, ϵ∗. This particular residual strain is called the ‘eigenstrain.’ Evaluation process of the appropriate eigenstrain
will be explained later in Sec. C.2.4, and, for the time being, the disturbed state is solved with a given eigenstrain.
For simplicity, the superscript ‘d’ is omitted below.

Since the eigenstrain is an inelastic strain, the total strain is made of the elastic strain e and the eigenstrain as

ϵi j(x) = ei j(x) + ϵ∗i j(x), ϵ∗i j

{
, 0 in Ω
= 0 in D −Ω . (C.12a, b)

Then, the Hooke law of Eq.(C.6) must be replaced by the relation between the elastic strain and the stress as

σi j = Ci jkl ekl = Ci jkl

(
ϵkl − ϵ∗kl

)
= Ci jkl

(
uk,l − ϵ∗kl

)
in D, (C.13)

where Eqs.(C.5) and (C.12) and the symmetry of the elastic moduli are used. For simplicity, the superscript ‘m’ is
omitted. Substitution of Eq.(C.13) into Eq.(C.9c) results in the equilibrium equation in terms of the displacement
u as

Ci jkl uk,l j = Ci jkl ϵ
∗
kl, j. (C.14)

Since no force is applied at infinity, the boundary condition is given by

n j σ ji = 0 at |x| → ∞. (C.15)

Putting Eq.(C.13) into Eq.(C.15), we express this boundary condition as

n j Ci jkl uk,l = n j Ci jkl ϵ
∗
kl = 0 at |x| → ∞ [

∵ ϵ∗(|x| → ∞) = 0
]
, (C.16)

in terms of the displacement u. We call this problem the ‘inclusion problem.’

C.2.3 Fourier Analysis
(1) Fourier Integral and Fourier Transformation

The inclustion problem can be solve by the Fourier analysis. First the eigenstrain ϵ∗ is expressed by the Fourier
integral as

ϵ∗i j(x) =
$ ∞

−∞
ϵ∗i j(ξ) exp (i ξ · x) dξ. (C.17)

The corresponding Fourier transform ϵ∗ can be obtained as

ϵ∗i j(ξ) =
1

(2π)3

$ ∞

−∞
ϵ∗i j(x) exp (−i ξ · x) dx. (C.18)

Similarly, the Fourier integral of the displacement is

ui(x) =
$ ∞

−∞
ui(ξ) exp (i ξ · x) dξ. (C.19)
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Substitution of Eqs.(C.17) and (C.19) into Eq.(C.14) yields

−
∫ ∞

−∞
Ci jkluk(ξ)ξlξ j exp (i ξ · x) dξ =

∫ ∞

−∞
Ci jklϵ

∗
kl(ξ) i ξ j exp (i ξ · x) dξ,

where a triple-integral is abbreviated by a single integral. Equality of the integrands in both sides results in

(Ci jkl ξl ξ j) uk = −i Ci jkl ϵ
∗
kl ξ j (C.20)

which is a Fourier transform of the equilibrium Eq.(C.14). Hence comes an algebraic equation for u as

Kik uk = Xi, (C.21)

where
Kik ≡ Ci jkl ξl ξ j, Xi ≡ −i Ci jkl ϵ

∗
kl ξ j.

Then, the Fourier transform of the displacement is obtained from this equation as

uk = (Kik)−1 Xi =
Nki(ξ)
D(ξ)

Xi, (C.22)

where Ni j is a cofactor matrix of the matrix Ki j, and D is its determinant calculated by

Ni j =
1
2

eikl e jmn Kmk Knl, D =
1
6

ei jk elmn Kil K jm Kkn, (C.23a, b)

where ei jk is the permutation symbol. Finally, the displacement can be obtained by the Fourier inverse transforma-
tion as

ui(x) = −i
∫ ∞

−∞
C jlmn ϵ

∗
mn(ξ) ξl Ni j(ξ) D−1(ξ) exp (i ξ · x) dξ. (C.24)

The corresponding strain and stress are also expressed by the Fourier integrals as

ϵi j(x) =
1
2

∫ ∞

−∞
Cklmn ϵ

∗
mn(ξ) ξl

{
ξ j Nik(ξ) + ξi N jk(ξ)

}
D−1(ξ) exp(i ξ · x) dξ, (C.25)

σi j(x) = Ci jkl

[∫ ∞

−∞
Cpqmn ϵ

∗
mn(ξ) ξq ξl Nkp(ξ) D−1(ξ) exp(i ξ · x) dξ − ϵ∗kl(x)

]
. (C.26)

(2) Green’s Function

Substituting Eq.(C.18) into Eq.(C.24), we have

ui(x) = −i
∫ ∞

−∞
dξC jlmn

1
(2π)3

{∫ ∞

−∞
dx′ ϵ∗mn(x′) exp

(−i ξ · x′)} ξl Ni j(ξ) D−1(ξ) exp (i ξ · x) . (C.27)

If we define a function G by

Gi j(x − x′) ≡ 1
(2π)3

∫ ∞

−∞
dξ Ni j(ξ) D−1(ξ) exp

{
i ξ · (x − x′)

}
. (C.28)

then the displacement in the above equation can be rewritten as

ui(x) = −
∫ ∞

−∞
C jlmn ϵ

∗
mn(x′)

(
∂Gi j(x − x′)

∂xl

)
dx′. (C.29)

Judging from the form of the integrand, we can call this function G Green’s function, because the derivative of G
in the integrand expresses ‘an influence function of x subjected to a unit eigenstrain at x′.’ Actually, the function
G satisfies the following equation;

Ci jkl Gkm,l j(x − x′) + δim δ(x − x′) = 0, (C.30)

where δim is the Kronecker delta while δ(x − x′) is the Dirac delta function. In three dimensions, δ(x − c) ≡
δ(x1 − c1) δ(x2 − c2) δ(x3 − c3). Try to prove it in a problem No.1 of Homework C-1. On the other hand, since the
equilibrium equation of an infinite body subjected to an arbitrary body force X is expressed by

Ci jkl uk,l j + Xi = 0, (C.31)

comparison of Eq.(C.30) with this equilibrium Eq.(C.31) indicates a physical meaning of the Green function G as
follows;



538 APPENDIX C. AVERAGE CHARACTERISTICS OF COMPOSITES

Gkm(x− x′) is the displacement component at x in the direction of xk of a body subjected to a unit
concentrated force at x′ in the direction of xm.

Namely, it is the same as the influence line in the structural mechanics.
Using derivatives of Eq.(C.29), we can express the strain and stress as

ϵi j(x) = −1
2

∫ ∞

−∞
Cmklmn ϵ

∗
mn(x′)

{
∂2Gik(x − x′)

∂xl ∂xi
+
∂2G jk(x − x′)

∂xl ∂x j

}
dx′, (C.32)

σi j(x) = −Cmi jkl

[∫ ∞

−∞
Cmpqmn ϵ

∗
mn(x′)

∂2Gkp(x − x′)
∂xq ∂xl

dx′ + ϵ∗kl(x)
]
. (C.33)

The explicit form of Green’s function of an isotropic elastic body has been obtained as

D(ξ) = µ2
m (λm + 2µm) ξ6, Ni j(ξ) = µm ξ2

{
(λm + 2µm) δi j ξ

2 − (λm + µm) ξi ξ j

}
, (C.34a, b)

Gi j(x − x′) =
1

4πµm

δi j

|x − x′| −
1

16πµm (1 − νm)
∂2

∂xi ∂x j

∣∣∣x − x′
∣∣∣ , ξ2 ≡ ξk ξk. (C.34c, d)
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Fig. C.5 Screw dislocation

Example: Infinite number of dislocations exist inside crys-
talline metals, and are kinds of gaps in the layers of atom grid.
They are sources of plastic deformation explained in Chap. 9,
and can be modeled by some distribution of inelastic strains: i.e.
eigenstrains. For example, one screw dislocation is the gap b in
the x3-direction lying straight to the x1-direction as is illustrated
in Fig. C.5. The gap b is called the Burgers vector. This gap can
be modeled by the distribution of eigenstrain as

ϵ∗23 =
1
2

b H(−x1) δ(x2), (C.35)

where H(x) is the Heaviside function. Since its Fourier transform is

ϵ∗23 = −
b δ(ξ2)
8π2 i ξ1

, (C.36)

substitution of this expression into Eq.(C.24) results in zero displacement components in the x1- and x2-directions:
i.e. u1 = 0 and u2 = 0, while non-zero component in the x3-direction is obtained as

u3 = −i
" ∞

−∞

2
ξ2

1 + ξ
2
2

−b
8π2 i ξ1

ξ2 exp {i (ξ1x1 + ξ2x2)} dξ1 dξ2 =
b

2π
tan−1 x2

x1
, (C.37)

which is eventually a multivalued function representing the gap of b in the x3-direction along the negative part of
the x1-axis.

(3) Eshelby Tensor — Isotropic Case

Assume that the material is isotropically elastic, and that the inclusion has an ellipsoidal shape. As a result from
Eshelby’s finding, when the eigenstrain inside Ω is uniform, the strain field is also uniform inside Ω but decays as
|x| goes to infinity. In such a case, the eigenstrain ϵ∗ in Eq.(C.32) can be put out of the integrand, and the equation
can be integrated to find a symbolic relation as

ϵi j(x) = Si jkl(x) ϵ∗kl. (C.38)

Then, inside the region of inclusion Ω, the fourth-order tensor S(x) becomes uniform: i.e. S(x) = const. (x ∈ Ω),
and depends only on the Poisson ratio of the matrix material and the ratios of the principal radii ai (i = 1, 2, 3) of
the inclusion. This tensor S is called the Eshelby tensor [56]. Especially when the inclusion has a spherical shape,
its components inside Ω are expressed by

Si jkl = α
1
3
δi j δkl + β

{
1
2

(
δik δ jl + δil δ jk

)
− 1

3
δi j δkl

}
= α Ai jkl + β Bi jkl, (C.39)
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Fig. C.6 Equivalent inclusion method

where
α ≡ 1 + νm

3 (1 − νm)
, β ≡ 2 (4 − 5νm)

15 (1 − νm)
. (C.40a, b)

And, these two tensors A and B are the basic isotropic tensors defined by

Ai jkl ≡
1
3
δi j δkl, Bi jkl ≡

1
2

(
δik δ jl + δil δ jk

)
− 1

3
δi j δkl, (C.41a, b)

and have a special property of ‘orthogonality’ as

Ai jmn Bmnkl = 0. (C.42)

Using these isotropic tensors, we can express the isotropic elasticity tensor as

Cmi jkl = 3κm
1
3
δi j δkl + 2µm

{
1
2

(
δik δ jl + δil δ jk

)
− 1

3
δi j δkl

}
= 3κm Ai jkl + 2µm Bi jkl, (C.43)

where κm is the bulk modulus related to the Lamé constants as

κm ≡ λm +
2
3
µm. (C.44)

Namely, the component relating to A represents the volumetric part of deformation, while the component of B is
the shearing part. Similarly, the identity tensor I can be written as

Ii jkl = 1
1
3
δi j δkl + 1

{
1
2

(
δik δ jl + δil δ jk

)
− 1

3
δi j δkl

}
= 1 Ai jkl + 1 Bi jkl. (C.45)

Nemat-Nasser and Hori [60] define a short-hand notation of fourth-order isotropic tensors specifying only the
coefficients of A and B as

S = (α, β), Cm = (3κm, 2µm), I = (1, 1). (C.46a, b, c)

Using the orthogonality of Eq.(C.42), we can carry out manipulations of fourth-order tensors easily as follows;

S − I = (α − 1, β − 1) ,
(
Cm

)−1 S =
(
α

3κm
,

β

2µm

)
. (C.47a, b)

This kind of manipulation is quite useful in solving inclusion problems with a spherical inhomogeneity without
using any numerical tools of computations; e.g. you can easily solve a problem No.2 of Homework C-1.

C.2.4 Equivalent Inclusion Method
Let’s return to the problem to calculate the fields near one inhomogeneity in an infinite body subjected to the
applied forces at infinity as is depicted in the left figure of Fig. C.6. Eshelby’s finding [18] ensures us that the
strain field inside Ω is uniform, as long as the ellipsoidal elastic inhomogeneity is embedded in the isotropically
elastic infinite body. This conclusion suggests that it is enough to solve a certain corresponding auxiliary problem
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with a certain eigenstrain ϵ∗ given in Ω as is illustrated in the right figure of Fig. C.6. In the previous section, the
eigenstrain is a given function. But, in this section, we show one method to evaluate the value of the eigenstrain
appropriate for the original inclusion problem.

After the decomposition explained in Fig. C.4, the uniform stress and strain fields σ0 and ϵ0 can be easily
solved to obtain

σ0 = Cm : ϵ0. (C.48)

Let σi j(x) and ϵi j(x) denote the disturbed fields of stress and strain, and we can express the Hooke law as follows;

σ0
i j + σi j(x) = Cmi jkl

(
ϵ0

kl + ϵkl(x)
)

in D −Ω, σ0
i j + σi j(x) = Cii jkl

(
ϵ0

kl + ϵkl(x)
)

in Ω. (C.49a, b)

And, Eshelby [18] showed
ϵi j(x) = const. in Ω. (C.50)

As has been explained, this original problem is not so easy to solve directly because there exists a difficulty in
satisfying the continuity condition on the interface surrounding the inhomogeneity. However, it becomes relatively
easy to solve the auxiliary problem as is shown in the rightmost figure of Fig. C.4. Then the corresponding auxiliary
problem subjected to the applied force is depicted in the right figure of Fig. C.6. If we can find the eigenstrain ϵ∗

so that the fields in both the figures of Fig. C.6 become equivalent to each other, the original two-phase problem is
considered to be solved indirectly. This approach is called the ‘equivalent inclusion method,’ and the expression
of the stress field in Eq.(C.49b) can be replaced by the following relation;

σ0
i j + σi j(x) = Cmi jkl

(
ϵ0

kl + ϵkl(x) − ϵ∗kl

)
, (C.51)

where the eigenstrain is specified as

ϵ∗i j

{
= 0 in D −Ω
, 0 in Ω (unknown but uniform) . (C.52)

Consequently, the value of the eigenstrain ϵ∗ must be evaluated by equating the right hand sides of Eqs.(C.49b)
and (C.51) as

Cii jkl

(
ϵ0

kl + ϵkl

)
= Cmi jkl

(
ϵ0

kl + ϵkl − ϵ∗kl

)
in Ω. (C.53)

Since Eq.(C.38) relates the disturbed strain field to the eigenstrain as

ϵkl = Sklmn ϵ
∗
mn, (C.54)

substitution of this equation into Eq.(C.53) results in

Cii jkl

(
ϵ0

kl + Sklmn ϵ
∗
mn

)
= Cmi jkl

(
ϵ0

kl + Sklmn ϵ
∗
mn − ϵ∗kl

)
→

{
Cii jkl Sklmn −Cmi jkl (Sklmn − Iklmn)

}
ϵ∗mn =

(
Cmi jkl −Cii jkl

)
ϵ0

kl.

Hence, the solution of the eigenstrain can be obtained as

ϵ∗i j =
{
Cii jmn Smnkl −Cmi jmn (Smnkl − Imnkl)

}−1 (
Cmklpq −Ciklpq

)
ϵ0

pq. (C.55)

Once the eigenstrain is obtained, the disturbed strain field inside the inhomogeneity can be calculated by substitut-
ing Eq.(C.55) into Eq.(C.54), and the corresponding stress field is evaluated from Eq.(C.51).

Exercises C-1

1. Prove that the function G satisfies Eq.(C.30). Note that the Fourier transform of a periodic function of a
single frequency is the Dirac delta function as

δ(ξ′ − ξ) =
1

(2π)3

∫ ∞

−∞
exp

{
i x · (ξ′ − ξ)

}
dx (C.56)

2. Obtain the ratios of the stresses inside an inhomogeneity: e.g. the ratios of
(
σ0

12 + σ12

)
to σ0

12 and of(
σ0

kk + σkk

)
to σ0

kk, using the equivalent inclusion method, when the ratio of shear moduli of the two phases
is either µi/µm = 10 or 1/10 with the same Poisson ratios of νi = νm = 0.3.
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C.3 Average Properties of Composites

C.3.1 Mori-Tanaka Average of Elastic Body
The disturbed mechanical fields are created by the existence of the inhomogeneities in the matrix material. These
disturbances are introduced by the mechanical interactions between the phases, one of which is the interaction
between one inhomogeneity and the matrix. Another source of disturbances is the interaction between many
inhomogeneities. When the inhomogeneities are distributed far away from each other, the disturbed strain field
can be approximated to become uniform on the basis of Eshelby’s discovery, and can be evaluated by the method
explained in Sec. C.2. However, if the distance between nearby inhomogeneitis is in the same order of the size of
a typical inhomogeneity, the strain in each inhomogeneity is no longer uniform. Recently, the latter interaction has
been examined by many researchers (e.g. [40, 77]) under some kinds of assumptions on the geometric distribution
pattern of inhomogeneities. We here neglect this latter interaction, and thus, as an approximate approach, we
explain one of the averaging methods of characteristics of composites called the ‘Mori-Tanaka average’3 using the
solution obtained in Sec. C.2.

Cm

Ci

Cm

ϵ∗

Fig. C.7 An equivalent model of composites

A composite in the left figure of Fig. C.7 is re-
placed by a uniform infinite body of the isotropically
elastic material with ellispoidal inclusions with some
eigenstrains inside as is shown in the right figure of
Fig. C.7. Let ⟨ϵ⟩m denote the average strain in the ma-
trix part, and we can write the Hooke law as

⟨σ⟩m = Cm : ⟨ϵ⟩m , (C.57)

where ⟨·⟩m represents the average over the matrix do-
main, and ⟨σ⟩m is the average stress in the matrix. An
important magical statement of this method is that the average strain ⟨ϵ⟩m is not defined by an actual average of
the evaluated mechanical field but remains unknown hoping that the effect of the neglected interaction between
inhomogeneities may be taken into account.

Suppose that one inhomogeneity is added into the portion of the matrix where the strain field is approximately
⟨ϵ⟩m. Since there are already a huge number of inhomogeneities, such addition of only one inhomogeneity does not
affect the overall mechanical characteristics at all. Therefore, instead of solving this two-phase problem with many
inhomogeneities directly, Mori and Tanaka [54] consider the problem of an infinite body having the average strain
⟨ϵ⟩m with only one inclusion. Then, the strain field in this inhomogeneity can be approximated by the field of one
inclusion in the infinite body with the strain field ⟨ϵ⟩m explained in Sec. C.2. Let Hooke’s law of the inhomogeneity
be given by

⟨σ⟩i = Ci : ⟨ϵ⟩i , (C.58)

and let ⟨γ⟩i denote the disturbed part of the strain, and the total strain inside one inhomogeneity is expressed as

⟨ϵ⟩i = ⟨ϵ⟩m + ⟨γ⟩i , (C.59)

where ⟨·⟩i is the average over the inhomogeneities. On the basis of the equivalent inclusion method, the stress field
in the inclusion must satisfy the equivalency condition of Eq.(C.53) as follows;

⟨σ⟩i = Ci :
{⟨ϵ⟩m + ⟨γ⟩i} = Cm :

{⟨ϵ⟩m + ⟨γ⟩i − ⟨ϵ∗⟩i} . (C.60)

Since the Eshelby tensor relates the disturbed strain to the eigenstrain as

⟨γ⟩i = S : ⟨ϵ∗⟩i , (C.61)

substitution of Eq.(C.61) into Eq.(C.60) yields

Ci : {⟨ϵ⟩m + S : ⟨ϵ∗⟩i} = Cm : {⟨ϵ⟩m + (S − I) : ⟨ϵ∗⟩i} .

Several steps of manipulations lead to an expression of the eigenstrain as

⟨ϵ∗⟩i =
{
Cm − (

Cm − Ci
)

S
}−1 (

Cm − Ci
)

: ⟨ϵ⟩m =
{
Cm − (

Cm − Ci
)

S
}−1 (

Cm − Ci
) (

Cm
)−1 : ⟨σ⟩m , (C.62)

3 The idea of this method is the same as the basis of a scheme in physics by which average electric current is estimated from flow of an
infinite number of free electrons with negative electric charge.,
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where Eq.(C.57) is used, and this Eq.(C.62) is essentially the same as Eq.(C.55). After substitution of Eq.(C.61)
into Eq.(C.60), considering the relation of Eq.(C.57), we can express the average stress in the inclusion as

⟨σ⟩i = Cm : {⟨ϵ⟩m + (S − I) : ⟨ϵ∗⟩i} = ⟨σ⟩m + Cm (S − I) : ⟨ϵ∗⟩i . (C.63)

Defining the volume fraction of the inhomogeneity by

f ≡
∑

VΩ
V

, (C.64)

we can define an average stress or a macroscopic stress of the composite σ by a volumetric average as

σ ≡ 1
V

∫
Ω

σ dV +
1
V

∫
D−Ω

σ dV =
∑

VΩ
V
⟨σ⟩i +

(
V −∑

VΩ
V

)
⟨σ⟩m = f ⟨σ⟩i + (1 − f ) ⟨σ⟩m (C.65)

which corresponds to the Voigt average. Furthermore, we here define the corresponding average strain ϵ by

ϵ ≡ f ⟨ϵ⟩i + (1 − f ) ⟨ϵ⟩m (C.66)

which is the same as the Reuss average. It is quite interesting that we employ both the Voigt average Eq.(C.1) and
the Reuss average Eq.(C.3) at the same time. Substituting Eqs.(C.57), (C.61) and (C.62) into Eq.(C.66), we have

ϵ =
(
Cm

)−1 : ⟨σ⟩m + f S : ⟨ϵ∗⟩i . (C.67)

Consequently, eliminating ⟨σ⟩m, ⟨σ⟩i, ⟨ϵ∗⟩i and ⟨ϵ⟩m from Eqs.(C.62), (C.63), (C.65) and (C.67), we can express
the overall strain in terms of the macroscopic stress as

ϵ =
[
Cm − (

Cm − Ci
) {S − f (S − I)}]−1 [

Cm − (1 − f )
(
Cm − Ci

)
S
] (

Cm
)−1 :σ. (C.68)

As has been mentioned before, no explicit definition of the average strain of the matrix part ⟨ϵ⟩m has been intro-
duced4 at all. Let C

−1
denote the average compliance of the composite, the right-hand side of the equation above

can be formally put as {
the right-hand side of Eq.(C.68)

} ≡ C
−1

:σ. (C.69)

Eventually, the average elastic modulus of the composite are obtained as

C ≡
[[

Cm − (
Cm − Ci

) {S − f (S − I)}]−1 [
Cm − (1 − f )

(
Cm − Ci

)
S
] (

Cm
)−1]−1

. (C.70)

In general, it is difficult to calculate the inverse of fourth-order tensors, but the property given in Eq.(C.47)
makes it easy as long as the inhomogeneity is spherical in shape, because all the tensors in equations above become
isotropic. Otherwise, you can use a manipulation explained by Nemat-Nasser and Hori [60]. As an example, the
macroscopic elastic constant of CFRP examined in Sec. 2.4.3 is evaluated by the Mori-Tanaka approach. We set
the Young modulus and the Poisson ratio of vinyl-ester synthetic resin matrix as Em = 2.81 GN/m2 and νm = 0.274,
while these of the carbon fiber are specified by Ei = 223 GN/m2 and νi = 0.352. The volume fraction of the fiber
is set at f = 0.5, and the fiber is modeled by an infinitely long circular cylinder to the x3-direction. Then values of
the corresponding Eshelby tensor can be found in the book [56], and Eq.(C.70) results in a symmetric matrix by
the Voigt-constant notation as

(
C

)
≡



8.62 3.17 3.77 0 0 0
3.17 8.62 3.77 0 0 0
3.77 3.77 115. 0 0 0

0 0 0 3.20 0 0
0 0 0 0 3.20 0
0 0 0 0 0 2.72


GN/m2, (C.71)

showing transverse isotropy.

4 The second author of this textbook recognized it the most important magical statement of this Mori-Tanaka approach.
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Fig. C.8 Comparison with experimental data in the case of spherical inhomogeneity

C.3.2 Comparison with Experiments
Estimates of the elastic moduli by the Mori-Tanaka approach are compared with the experimental measurements
[65, 70] in Fig. C.8. Inhomogeneity in the experiments is approximated by a sphere. Dot-dashed curves represent
the Voigt and Reuss average, while solid curves show the estimates by the Mori-Tanaka approach. The latter lies
between two classical bounds but is closer to the Reuss average, while the experimental data are rather close to
the Mori-Tanaka averages. Dotted curves indexed by ‘SC’ are predictions by Hill’s self-consistent method [27]
explained later on, which predicts Poisson’s ratios quite well independently of the volume fraction. Therefore, as
long as the volume fraction f is small, these two analytical estimates are close to each other suggesting that the
interaction effect is taken into account properly to some extent. In other words, the classical bounds by Voigt and
Reuss models cannot be used in practice at least for composites with particulate inhomogeneities.

Brief explanation of Hill’s self-consistent method: This method is similar to the Mori-Tanaka approach, but
the inhomogeneities are embedded not in the actual matrix material but in the unknown average material of the
composite. It may sound quite reasonable if you remember the first assumption of the Mori-Tanaka approach
which is an addition of one inhomogeneity into the matrix portion with the average strain ⟨ϵ⟩m. Therefore, the
prediction of Eq.(C.70) of elastic moduli becomes implicit. For example, when the inhomogeneity is spherical in
shape, they become

µ = µm +
f (µi − µm) µ

µ + 2 S1212 (µi − µ)
, κ = κm +

f (κi − κm) κ
κ + 1

3 Sii j j (κi − κ)
, (C.72a, b)

where unknown average moduli appear even in the right-hand sides. Furthermore, the Eshelby tensors depend on
the unknown Poisson ratio of the average composite material as

2 S1212 =
2 (4 − 5ν)
15 (1 − ν) ,

1
3

Si ji j =
1 + ν

3 (1 − ν) , ν =
3κ − 2µ

2 (µ + 3κ)
. (C.73a, b, c)

The most controversial result is observed in porous materials. By setting the elastic constants of the inhomo-
geneities zero in order to make them voids, the above equations result in

µ

µm
= 1 − f

1 − 2 S1212
,

κ

κm
= 1 − f

1 − 1
3 Sii j j

, (C.74a, b)
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and the average Poisson ratio is calculated from

ν =
(7 + 5νm) − 6 f (1 + νm) −

√
D

5 {2 − 3 f (1 − νm)} , (C.75)

where
D ≡ (7 − 5νm)2 − 6 f

(
19 − 56νm + 45ν2

m

)
+ 9 f 2

(
9 − 42νm + 49ν2

m

)
. (C.76)

Strangely enough, the elastic constants are calculated to be zero at f = 0.5 from these equations. Considering
that a volume fraction of one big spherical void fitted in a cube is f = π/6 ≃ 0.52, many readers may think this
result appropriate. However, since absolute sizes of the inhomogeneities need not to be specified in the formulation
above, you can insert as many small spherical voids as possible in the matrix portion outside the one big spherical
void at the center, so that you can make the void volume fraction larger than 0.52 just like sponges.
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Fig. C.9 Bulk modulus of porous material

The elastic constants of void are set at zero in the previ-
ous example, but we here leave the bulk modulus arbitrary
and set

µi = 0, νi = 0.5, κi = arbitrary, k ≡ κi
κm
, 0.

(C.77a, b, c, d)
Fig. C.9 shows the results. The average Poisson ratio be-
comes smaller as f becomes larger but starts increasing
near f = 0.5 to obtain at f = 0.6

ν = 0.5, µ = 0,
κ

κm
=

5k
3 + 2k

. (C.78a, b, c)

However, since the actual bulk modulus of the air is κi ≃ 0.14 MN/m2, the ratio of bulk moduli k is about 10−6 ∼
10−5 when the matrix material is steel, aluminum, glass or even polyvinyl chloride resin. Therefore, the average
elastic constants of porous materials are predicted to be almost zero at f = 0.5 by Hill’s self-consistent method.

Exercises C-2

3. Derive Eqs.(C.62) and (C.68) first. Calculate the average elastic constants when the inhomogeneity is spheri-
cal in shape with

µi
µm
= 10 and νm = νi = 0.3. Plot the results in a figure just like Fig. C.8. Next, exchange the

materials of the matrix and inhomogeneity and calculate the average elastic constants: i.e. for a two-phase
composite with materials ‘A’ and ‘B’, solve the following two cases;

1. f % of the spherical material ‘A’ is distributed in the material ‘B’.

2. (1 − f )% of the spherical material ‘B’ is distributed in the material ‘A’.

Although the shape of the matrix part is not spherical, both composites are made of the same two materials
with the same volume fraction. Do these Mori-Tanaka estimates coincide with each other? Plot the results
on a figure relating µ to f . It is well known that these two estimates happen to be equal to the predictions
called ‘Hashin-Shtrikman’s upper and lower bounds’ [26] explained in Sec. C.3.3 (2) as long as the shape of
the inhomogeneity is sphere.

C.3.3 Application to Elastic-Plastic Composites and Improvement
(1) Incremental Plasticity and Yield Surface

We can easily extend the Mori-Tanaka estimate in elasticity to apply to the incremental mechanics of plasticity,
because the incremental governing equations are formally the same as those of the elastic body in infinitesimal
displacements [93, 126, 131]. The local incremental constitutive relations are written as

⟨σ̇⟩m = Cm :
(⟨ϵ̇⟩m − ⟨

ϵ̇p⟩
m

)
, ⟨σ̇⟩i = Ci :

(⟨ϵ̇⟩m + ⟨γ̇⟩i − ⟨
ϵ̇p⟩
i

)
, (C.79a, b)

where a quantity with a superposed dot indicates an increment or a rate, and ϵ̇p is the plastic strain rate. Substitution
of Eq.(C.79a) into Eq.(C.79b) results in

⟨σ̇⟩i = Ci :
{(

Cm
)−1 : ⟨σ̇⟩m + ⟨γ̇⟩i − ∆

⟨
ϵ̇p⟩
i

}
, (C.80)
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where
∆

⟨
ϵ̇p⟩
i ≡

⟨
ϵ̇p⟩
i −

⟨
ϵ̇p⟩
m (C.81)

which is a misfit between two plastic strain rates of the matrix and inhomogeneity. The equivalency condition of
the corresponding equivalent inclusion is given by

⟨σ̇⟩i = Ci :
{(

Cm
)−1 : ⟨σ̇⟩m + ⟨γ̇⟩i − ∆

⟨
ϵ̇p⟩
i

}
= Cm :

{(
Cm

)−1 : ⟨σ̇⟩m + ⟨γ̇⟩i −
(
∆

⟨
ϵ̇p⟩
i + ⟨ϵ̇∗⟩i

)}
. (C.82)

Then the disturbance due to the misfit of the plastic strain rates can be evaluated by the Eshelby tensor as

⟨γ̇⟩i = S :
(
∆

⟨
ϵ̇p⟩
i + ⟨ϵ̇∗⟩i

)
. (C.83)

Just like the elastic case in the previous sections, you can calculate the eigenstrain rate ϵ̇∗ from these equations.
Eventually, the overall constitutive equation can be expressed as

ϵ̇ = C
−1

: σ̇ + F :
⟨
ϵ̇p⟩
m + G :

⟨
ϵ̇p⟩
i , (C.84)

where C is the global elastic tensor, and the explicit expressions of C, F and G can be found in the references
[93, 126]. Note that

F , (1 − f ) I, G , f I; (C.85a, b)

i.e. the overall plastic strain rate is not equal to a volumetric average of the two plastic strain rates of the matrix
and inhomogeneity.
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Fig. C.10 Macroscopic yield surface of composite

As an example, a global yield surface of the
composite material of 2124Al reinforced by SiC
examined in the reference [77] is calculated. The
yield condition of the aluminum is specified by
the Mises model, but SiC remains elastic. SiC
is modeled by an aligned prolate-spheroid, the
longest principal axis of which lies on the x1-x3
plane and is oriented to the direction clockwise
from x3-axis around x2-axis by 60 degrees. Also,
we set a1 = a2 and a3/a1 = 2, and the volume frac-
tion of the inclusion is 13.2%. The yield stress is
given by σym = 700 MN/m2, while the elastic con-
stants are assumed as follows: Em = 60 GN/m2,
νm = 0.3, Ei = 450 GN/m2 and νi = 0.2. Circles
in Fig. C.10 [131] represent the contour lines of
the macroscopic yield surface. Along each con-
tour circle, the global hydrostatic pressure p is
kept constant at the indicated value. Although the
matrix material cannot yield under the hydrostatic
pressure, the composite can become plastic in such an isotropic state of stress because of the microstructures.

(2) Improvement using Three-Phase Model

The Mori-Tanaka averages improve the classical Voigt and Reuss estimates quite well indicating that the mechan-
ical interactions are properly taken into account to some extent. However, the larger the volume fraction of the
inhomogeneity is, the lower the precision of predictions of average characteristics becomes, as is clear from Fig.
C.8. On the other hand, Hill’s self-consistent method can predict experimental measurements even when the vol-
ume fraction of the inhomogeneity is large. This comparison suggests that the choice of the matrix material plays
an important role on quantitative improvement of evaluation of average properties within the framework of the
Mori-Tanaka approach. We here apply the Mori-Tanaka scheme to a three-phase composite in order to predict the
average characteristics of two-phase materials [36].

In estimating the average elasticity of a composite of two materials ‘1’ and ‘2’, we temporarily treat these two
materials as two inhomogeneities and put them into another arbitrary matrix material ‘M’. After averaging this
three-phase composite by the Mori-Tanaka approach, we take a limit so that the volume fraction of the matrix
material ‘M’ becomes zero to make the composite a two-phase composite of the materials ‘1’ and ‘2’ only. Since
the temporary matrix material ‘M’ eventually vanishes as a limit, we call this matrix portion the ‘virtual matrix.’
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As a typical example, an elastic composite with spherical inhomogeneities is examined; the two materials have the
bulk moduli κ1 and κ2, and the volume fraction of the two materials are f1 and f2. Although f1 + f2 = 1 when
this is a two-phase composite, we set them arbitrary and set both the phases spherical in shape for the time being.
We first put these two materials into a virtual matrix of the material ‘M’ with its bulk modulus κm and its volume
fraction {1 − ( f1 + f2)}. After averaging this three-phase composite by the Mori-Tanaka scheme, we take a limit as
( f1 + f2)→ 1 to eliminate the virtual matrix portion. Then, the average bulk modulus κ can be obtained as

κ =

2∑
i=1

fi κi

κm − (κm − κi) α

2∑
i=1

fi
κm − (κm − κi) α

, (C.86)

where α and β are calculated from Eq.(C.40) using Poisson’s ratio νm of the non-existing virtual matrix material
‘M’. Existence of κm and νm of the non-existing material is the most important characteristics of this approach.
Depending on the choice of this material ‘M’, different average elastic moduli can be ‘arbitrarily’ calculated.

For example, let the virtual matrix a rigid body: i.e. κm → ∞, and we have

κ = f1 κ1 + f2 κ2 (C.87)

which coincides with the Voigt estimate of Eq.(C.2b). As you may easily expect, if a vacuum is chosen as the
virtual matrix: i.e. κm → 0, the Reuss estimate of Eq.(C.4b) is obtained as

κ =

(
f1
κ1
+

f2
κ2

)−1

. (C.88)

Therefore, when the elastic moduli of the virtual matrix are chosen to be positive and finite, the predictions by
this three-phase approach are bounded by the Voigt and Reuss averages. Namely, these classical averages can be
considered as the upper and lower ‘limits’ rather than the ‘bounds.’
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Fig. C.11 Improvement of average bulk modulus

A more interesting result is obtained when the virtual
matrix is made of the material ‘1’. Namely, in the case of
κm = κ1 and νm = ν1, Eq.(C.86) results in

κ

κ1
= 1 −

f2

(
1 − κ2

κ1

)
1 − f1

(
1 − κ2

κ1

)
α

(C.89)

which is the Mori-Tanaka average of a composite of the ma-
terial ‘1’ reinforced by the material ‘2’. Furthermore, this
average coincides with one of the Hashin and Shtrikman up-
per and lower bounds [26] as long as the shape of the inho-
mogeneity is spherical. Also, another bound of the Hashin
and Shtrikman bounds can be obtained when the material
‘2’ is chosen for the virtual matrix: i.e. κm = κ2 and νm = ν2.
The latter average is the solution of the problem No.3 of
Homework C-2.

In the reference [36], we make a proposal that the mate-
rial ‘M’ of the virtual matrix is selected so that the interac-
tion elastic energy becomes minimum. And, we found that two different predictions were obtained from Eq.(C.86)
depending on how the elastic energy is expressed. Namely, the result by minimizing the elastic energy expressed
in terms of the global strain rate ϵ̇ is different from the result from the elastic energy in terms of the global stress
rate σ̇. In other words, the former estimate is related to the property of the macroscopic modulus, while the latter is
related to the macroscopic compliance. Two solid curves in Fig. C.11 are the corresponding results from Eq.(C.86)
by the two choices of the material ‘M’ using the two different expressions of the interaction elastic energy. In
the same figure, the prediction by Hill’s self-consistent method is drawn by a dashed curve, and the Hashin and
Shtrikman upper and lower bounds are also shown by two dot-dashed curves. In this case, the Hashin and Shtrik-
man upper bound is the same as the Mori-Tanaka average, while the lower bound is the same as the (inverted)
Mori-Tanaka average of a composite in which the materials of the matrix and the inhomogeneity are exchanged.
The most important characteristics of three kinds of approaches observed in this figure are as follows;
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• The present averages by the three-phase body result in predictions narrower than the Hashin-Shtrikman
bounds.

• The present averages converge to Hill’s self-consistent estimates when one of the volume fractions of the
two phases becomes small.

• When f2 is small, the present estimate converges to the Hashin-Shtrikman upper bound, while it converges
to the lower bound when f2 is large.

• Although no plot is given in this figure, the classical Voigt and Reuss averages are quantitatively and quali-
tatively different from these three kinds of predictions.

(3) Elastic-Plastic Behavior

The three-phase approach in the previous section can be also applied to elastic-plastic materials [43, 104]. For
simplicity of formulation, the virtual matrix is chosen to be elastic. The average incremental constitutive laws of
the matrix and inhomogeneity are given by

⟨σ̇⟩m = Cm : ⟨ϵ̇⟩m , ⟨σ̇⟩i = Ci :
{⟨ϵ̇⟩i − ⟨

ϵ̇p⟩
i
}
. (C.90a, b)

Since the incremental strain in the inhomogeneity can be ⟨ϵ̇⟩i = ⟨ϵ̇⟩m + ⟨γ̇⟩i including the disturbance component,
Eq.(C.90b) can be expressed by

⟨σ̇⟩i = Ci :
{⟨ϵ̇⟩m + ⟨γ̇⟩i − ⟨

ϵ̇p⟩
i
}
. (C.91)

Then, the incremental constitutive equation of the corresponding auxiliary problem can be expressed by

⟨σ̇⟩i = Cm :
[⟨ϵ̇⟩m + ⟨γ̇⟩i − {⟨

ϵ̇p⟩
i + ⟨ϵ̇∗⟩i

}]
(C.92)

using the eigenstrain rate. Hence, the disturbed component can be evaluated as

⟨γ̇⟩i = Si :
{⟨
ϵ̇p⟩

i + ⟨ϵ̇∗⟩i
}

(C.93)

by using the Eshelby tensor. Finally, from these equations, the equivalent inclusion method determines the incre-
mental eigenstrain ⟨ϵ̇∗⟩i.
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Fig. C.12 Aluminum reinforced by boron fibers

Several steps of manipulations using the definitions of the
overall stress rate and strain rate corresponding to Eqs.(C.65)
and (C.66) lead to the overall constitutive equation as

ϵ̇ = C
−1

: σ̇ +
2∑

i=1

fi
(
Pi − C

−1
Mi

)
:
⟨
ϵ̇p⟩

i , (C.94)

where the volume fraction of the virtual matrix is set at zero
as a limit. Explicit definitions of C and other tensors are
given in the reference [104]. The second term of the right-
hand side of Eq.(C.94) represents the macroscopic plastic
strain rate. Fig. C.12 shows comparisons with the experimen-
tal measurements examined in the reference indicated in the
figure. The material is an aluminum composite reinforced
by long boron fibers. The aluminum has Young’s modulus
E1 = 55.85 GN/m2 and Poisson’s ratio ν1 = 0.32, while the
boron has E2 = 379.23 GN/m2 and ν2 = 0.2. The volume
fraction of boron is 34%, and the radii of ellipsoidal inclusion
are set at a3/a1 = 1000 and a2 = a1. The boron fibers remain elastic, while the aluminum yields by the von Mises
condition as

f ≡
√

J2 − F
(⟨
ϵ̇p⟩

1
)
= 0, (C.95)

where the tensile yield stress F (⟨ϵ̇p⟩1) is specified by a power law as

F
(⟨
ϵ̇p⟩

1
)
=

1
√

3

σy1 + h1

 ϵeq
1√
3

n1
 (C.96)
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Fig. C.13 Epoxy reinforced by silica particles

with σy1 = 79.29 MN/m2, h1 = 827.4 MN/m2 and n1 = 0.6. The equivalent plastic strain ϵeq
1 is defined by

ϵ
eq
1 ≡

∫
history

√
2 ⟨ϵ̇p⟩1 : ⟨ϵ̇p⟩1 dt. (C.97)

Two solid curves by the three-phase approach show good precision in relatively small deformation states, and are
closer to the experimental measurements than the predictions by the original Mori-Tanaka scheme. However, in
large deformation states, the predictions in [40] seem to be much better, because the debonding along the interface
of the inhomogeneity is taken into account. So that, in the reference [43], we further add one kind of debonding
model to obtain improved results.

Another comparison is made with experimental results of epoxy composites reinforced by spherical silica
particles in Fig. C.13. Epoxy has Young’s modulus E1 = 3.16 GN/m2 and Poisson’s ratio ν1 = 0.35, while silica
has E2 = 73.1 GN/m2 and ν2 = 0.18. The silica remains elastic, while the epoxy satisfies the same power law of the
Mises yield condition as that of the previous example with σy1 = 75.86 MN/m2, h1 = 32.18 MN/m2 and n1 = 0.26.
In these cases, the three-phase approach improves the original Mori-Tanaka scheme, but the experimental results
are not predicted so well when the volume fraction of the inhomogeneity is large.



Appendix D

Basics of Tensor Analysis

D.1 Coordinate and Base Vector

O
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1

P1 + P2 cosα
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Fig. D.1 Skew rectilinear coordinate sys-
tem

Referring to the book1 by Flügge [19], we explain basic character-
istics of the tensor analysis needed in the field of the mechanics of
continua. In a skew rectilinear coordinate system shown in Fig. D.1,
let gi (i = 1, 2) using subscripts denote unit base vectors along the
corresponding coordinate axes, and an arbitrary vector P can be de-
composed with respect to the base vectors g j as

P = P1 g1 + P2 g2, (D.1)

where the quantities Pi (i = 1, 2) using superscripts are called
the contravariant components. On the other hand, denoting the
horizontal (x-direction: same as the ‘1’-direction) and vertical (y-
direction) unit base vectors by i1 and i2 respectively, we can decom-
pose the vector P by using the horizontal and vertical components Px and Py as

Px = P1 + P2 cosα, Py = P2 sinα.

Then, suppose that the vector P is a force vector and that a displacement vector is denoted by a vector u, and the
work W done by these force and displacement can be expressed by an inner product (dot product: scalar product)
of the two vectors as

W = u · P =
(
u1 + u2 cosα

) (
P1 + P2 cosα

)
+ u2 sinα P2 sinα.

Namely, we can write
W = u · P =

(
u1 + u2 cosα

)
P1 +

(
u2 + u1 cosα

)
P2. (D.2)

Furthermore, if we define the displacement components using subscripts by

u1 ≡ u1 + u2 cosα, u2 ≡ u2 + u1 cosα, (D.3a, b)

the work expressed by Eq.(D.2) can be rewritten as

W =
3∑

i=1

ui Pi = ui Pi, (D.4)

where two-dimensional explanation above is extended to three dimensions. It should be noted that the summation
symbol

∑
is omitted in the last expression of Eq.(D.4). This expression is possible only when the condition called

the summation convention is satisfied. The rule is briefly given as

Summation Convention: When the same letter appears twice as one subscript and one superscript in a
product, the symbol

∑
can be omitted.

1 We strongly recommend readers to read this book if available.
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If another set of base vectors gi (i = 1, 2) using superscripts is defined as is shown in Fig. D.1, geometric examina-
tion of the figure will lead to a conclusion that the quantities u1 and u2 in Eq.(D.3) using subscripts are components
with respect to this new set of the base vectors gi. Such decomposition of the vector P is shown explicitly in Fig.
D.1. Namely, just like Eq.(D.1), an arbitrary vector can be expressed as

u = u1 g
1 + u2 g

2. (D.5)

These components ui using subscripts are called the covariant component. Accordingly, the base vector gi is
called the covariant base vector, while gi is the contravariant base vector.

The work in Eq.(D.2) can be also rewritten as

W = u1
(
P1 + P2 cosα

)
+ u2

(
P2 + P1 cosα

)
. (D.6)

Therefore, quantities defined by

P1 = P1 + P2 cosα, P2 = P2 + P1 cosα, (D.7a, b)

are the covariant components of the vector P as can be understood from comparison with Eq.(D.3). Hence comes

P = P1 g
1 + P2 g

2. (D.8)

As can be estimated from the figure, it should be noted that the base vector gi is not a unit vector but has the

absolute value
1

sinα
. However, these two kinds of base vectors are orthogonal to each other and satisfy

∣∣∣gi
∣∣∣ = 1

sinα
, gm · gn = δ

m
n , (D.9a, b)

where δm
n is the Kronecker’s delta (not a tensor component). Eventually, the work can be expressed as

W =
(
ui g

i
)
·
(
P j g j

)
= uiP j gi · g j = uiP j δi

j = ui Pi =
(
ui gi

)
·
(
P j g

j
)
= u j P j. (D.10)

Incidentally, in a rectangular Cartesian coordinate system (α = π/2), no distinction is needed between the covariant
components and the contravariant components.

In order to consider geometric relations, let ξi denote coordinates to the gi-direction, and the coordinate trans-
formation between a ξ system and a rectangular Cartesian x system can be written as

x1 = ξ1 + ξ2 cosα, x2 = ξ2 sinα. (D.11a, b)

Since an alternative definition of the base vector is given by

gi =
∂x j

∂ξi i j, (D.12)

substitution of Eq.(D.11) into this equation results in geometric relations as follows;

g1 = i1, g2 = cosα i1 + sinα i2

which also show that these are non-dimensional unit vectors. However, as is clear from Eq.(D.9), the covariant
base vectors gi are non-dimensional, but their magnitudes are not unity. Furthermore, it should be noted that the
base vectors are no longer non-dimensional in a polar coordinate system (see Sec. D.4).

D.2 Metric Tensor and Permutation Tensor
An inner product of the base vectors of the same kind defines the metric tensor as

gi j ≡ gi · g j, gi j ≡ gi · g j. (D.13a, b)

On the other hand, the inner product of the covariant and contravariant base vectors is zero because these vectors
are orthogonal to each other as is shown in Eq.(D.9b). Using these relations, we can relate the covariant component
to the contravariant component as

ui g
i = u j g j → ui g

i · gk = u j g j · gk → ui δ
i
k = u j g jk → uk = u j g jk; (D.14)
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i.e. the metric tensor exchanges the superscript into the subscript and vice versa.
In order to express an outer product (cross product: vector product) of two vectors and a determinant of a

matrix in terms of components, we here introduce the permutation symbol ei jk (not a tensor component) as

ei jk = ei jk =


+1 if (i jk) is even permutation of (123)
−1 if (i jk) is odd permutation of (123)
0 otherwise

. (D.15)

Then, for an arbitrary 3 × 3 matrix
(

C
)

as

(
C

)
≡

 C1
1 C1

2 C1
3

C2
1 C2

2 C2
3

C3
1 C3

2 C3
3

 ,
its determinant c can be expressed as

c ≡ det
(
C

)
= Ci

1 C j
2 Ck

3 ei jk = C1
i C2

j C3
k ei jk, elmn c = Ci

l C j
m Ck

n ei jk, c =
1
6

Ci
l C j

m Ck
n ei jk elmn. (D.16a, b, c)

Furthermore, defining the determinant of the metric tensor in the matrix form by

g ≡ det
(
gi j

)
,

1
g
≡ det

(
gi j

)
, (D.17a, b)

we introduce the permutation tensor ϵi jk as

ϵi jk =
√
g ei jk, ϵ i jk =

1
√
g

ei jk. (D.18a, b)

Useful relations of these tensors are, for example,

ϵ i jk ϵimn = δ
j
m δ

k
n − δ

j
n δ

k
m, ϵ i jk ϵi jn = 2δk

n, ϵ i jk ϵi jk = 6. (D.19a, b, c)

Using this permutation tensor, the component of a vector w = a × b defined by an outer product of the two vectors
a and b can be given by

wk = ai b j ϵ
i jk = ϵki j ai b j. (D.20a, b)

In the rectangular Cartesian coordinate system, the components of the permutation tensor is equivalent to the
permutation symbol because g = 1.

D.3 Covariant Derivative
In a polar coordinate system, differential operators such as the nabla ∇ and the Laplacian ∇2 have complicated
expressions in comparison with those in rectangular Cartesian coordinates. This is because one of the base vectors
is not constant. Suppose that a vector function u is expressed as u = ui gi using the contravariant components, we
can easily realize that the derivative of u needs differentiation of the base vector gi with respect to the coordinates,
because, in general, the base vectors gi are not always constant but functions of the independent variables. Let ξ j

denote the independent variable to the direction of the base vector g j, and the derivative of u with respect to the
coordinate ξ j must be

∂u
∂ξ j =

∂
(
ui gi

)
∂ξ j =

∂ui

∂ξ j gi + ui ∂gi

∂ξ j ,

where the second term of the rightmost side is a derivative of the corresponding base vector. Recalling that the
base vector can be defined by Eq.(D.12), we can derive the derivative of the base vectors as

∂gi

∂ξ j = gi, j =
∂2xk

∂ξi ∂ξ j ik,

where a comma followed by a subscript j in the middle expression represents the differentiation with respect to the
independent variable ξ j. Let us express the derivative of the base vector as

gi, j = Γi jk g
k = Γk

i j gk, (D.21)
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where the quantity Γi jk is called the Christoffel symbol (not tensor components). Then, the inner product with
another base vector leads to

gi, j · gk = Γi jl g
l · gk = Γi jl δ

l
k = Γi jk, gi, j · gk = Γk

i j. (D.22a, b)

Using this Eq.(D.21), we can write the derivative above as

∂u
∂ξ j =

∂
(
ui gi

)
∂ξ j = ui

, j gi + ui gi, j =
(
ui
, j + uk Γi

jk

)
gi = ui

∣∣∣
j gi → ui

∣∣∣
j = ui

, j + uk Γi
jk, (D.23a, b)

where ui
∣∣∣
j is called the covariant derivative.

D.4 Physical Components in Polar Coordinate System
We have learned that the base vectors are not always unit just like the base vector gi of Eq.(D.9) in Fig. D.1.
Moreover, the base vectors may be functions of independent variables as has been explained in Sec. D.3. In such
cases, the tensor components do not necessarily have any physical meanings although the corresponding tensors
are of course physical entities. In order to show one typical example, we here examine quantities and differential
operators in the polar coordinate system as (ξ1 = r, ξ2 = θ, ξ3 = z). First of all, the base vectors are defined by

gr = i1 cos θ + i2 sin θ, gθ = −i1 r sin θ + i2 r cos θ, gz = i3, (D.24a, b, c)

where gθ has a dimension of length r. From these, we have metric tensors as

grr = 1, gθθ = r2, grr = 1, gθθ =
1
r2 , (D.25a, b, c, d)

and non-zero terms of the Christoffel symbols are given by

Γrθθ = r, Γθθr = −r, Γr
θθ = −r, Γθrθ =

1
r
. (D.26a, b, c, d)

Using these quantities, we can write explicitly the equilibrium equations σ ji
∣∣∣
j + f i = 0 as follows;

∂σrr

∂r
+
σrr

r
+
∂σrθ

∂θ
− rσθθ +

∂σrz

∂z
+ f r = 0, (D.27a)

∂σrθ

∂r
+

3σrθ

r
+
∂σθθ

∂θ
+
∂σθz

∂z
+ f θ = 0, (D.27b)

∂σrz

∂r
+
σrz

r
+
∂σzθ

∂θ
+
∂σzz

∂z
+ f z = 0 (D.27c)

where f r and f θ are the body force components to the directions of gr and gθ respectively. Since the base vector
gθ has a dimension of length r as has been shown in Eq.(D.24), the corresponding components to the θ-direction
of any tensors do not have clear physical meanings. Then, define physical components of the stress tensor and the
force vector by adjusting the dimension of the base vector gθ as

τrr ≡ σrr, τrθ ≡ rσrθ, τθθ ≡ r2σθθ, τzz ≡ σzz, τrz ≡ σrz, τθz ≡ rσθz, qr ≡ f r, qθ ≡ r f θ, qz ≡ f z,
(D.28a, b, c, d, e, f, g, h, i)

and the equilibrium Eq.(D.27) can be rewritten as

∂τrr

∂r
+

1
r
∂τrθ

∂θ
+
τrr − τθθ

r
+
∂τrz

∂z
+ qr = 0, (D.29a)

∂τrθ

∂r
+

2τrθ

r
+

1
r
∂τθθ

∂θ
+
∂τθz

∂z
+ qθ = 0, (D.29b)

∂τrz

∂r
+
τrz

r
+

1
r
∂τzθ

∂θ
+
∂τzz

∂z
+ qz = 0, (D.29c)

which are well-known expressions of the equilibrium equation found in many books.
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Next, the tensor components of the displacement gradients are expressed as

ur |r =
∂ur

∂r
, ur |θ =

∂ur

∂θ
− r uθ, uθ

∣∣∣
r =

∂uθ

∂r
+

1
r

uθ, uθ
∣∣∣
θ
=
∂uθ

∂θ
+

1
r

ur. (D.30a, b, c, d)

We here again define a physically meaningful ‘vector’ u having the physical components corresponding to the
tensor components of u by

vr ≡ ur, vθ ≡ r uθ. (D.31a, b)

Then the tensor components of the displacement gradients can be expressed by the physical components as

ur |r =
∂vr

∂r
, ur |θ =

∂vr

∂θ
− vθ, uθ

∣∣∣
r =

∂

∂r

(
vθ

r

)
+

1
r2 v

θ, uθ
∣∣∣
θ
=

1
r
∂vθ

∂θ
+

1
r
vr. (D.32a, b, c, d)

Since the covariant strain tensor ϵi j is conjugate with the contravariant stress tensor σi j with respect to the elastic
work, we can express the covariant components of the displacement tensor above using the metric tensor as

ur |r = grr ur |r =
∂vr

∂r
, ur |θ = grr ur |θ =

∂vr

∂θ
− vθ, uθ |r = gθθ uθ

∣∣∣
r = r

∂vθ

∂r
, uθ|θ = gθθ uθ

∣∣∣
θ
= r2

(
1
r
∂vθ

∂θ
+

1
r
vr
)
.

(D.33a, b, c, d)
Therefore, the strain tensor components can be defined by

ϵrr =
∂vr

∂r
, 2ϵrθ = r

{
1
r
∂vr

∂θ
+
∂vθ

∂r
− 1

r
vθ
}
, ϵθθ = r2

(
1
r
∂vθ

∂θ
+

1
r
vr
)
. (D.34a, b, c)

Incidentally, the covariant base vectors corresponding to the contravariant base vectors in Eq.(D.24) are given by

gr = i1 cos θ + i2 sin θ, gθ = −i1
1
r

sin θ + i2
1
r

cos θ. (D.35a, b)

Hence, physical components εi j of the strain tensor components ϵi j can be defined by

εrr = ϵrr, εrθ =
1
r
ϵrθ, εrr =

1
r2 ϵθθ. (D.36a, b, c)

Eventually, the physical components of the strain can be defined by

εrr =
∂vr

∂r
, εrθ =

1
2

(
1
r
∂vr

∂θ
+
∂vθ

∂r
− 1

r
vθ
)
, εθθ =

1
r
∂vθ

∂θ
+

1
r
vr. (D.37a, b, c)

Components relating to the z-axis are almost the same as those in the rectangular Cartesian coordinate system and
are

εzz =
∂vz

∂z
, εrz =

1
2

(
∂vr

∂z
+
∂vz

∂r

)
, εθz =

1
2

(
∂vθ

∂z
+

1
r
∂vz

∂θ

)
. (D.38a, b, c)

As has been shown above, the tensor components do not always represent the corresponding physical quantities.
In particular, when a constitutive model is specified by the following tensor equation

σi j = Ci jkl ϵkl, (D.39)

the coefficient tensor C itself may not have a clear physical meaning. The physical meanings must be taken into
account on the physical basis using physical components of the stress and strain tensors; e.g.

τi j = C
i jkl
εkl (D.40)

must express clear physical characteristics in the relation between physical components, although this is not a
tensor equation. A shell theory in an arbitrary curvilinear coordinate system can be found, for example, in a
textbook [84].Furthermore, a great care must be needed in defining physical quantities of the tensors especially in
finite displacement theory, because the base vectors within the framework of Lagrangian approach depend on the
deformation undertaken, and are no longer unit or orthogonal system, as has been shown through the definition of
the physical stress in Eq.(B.22) for a finite displacement theory of in-plane beams.
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D.5 Coordinate Transformation and Tensors
What are the tensors? They represent physical quantities independent of coordinate systems chosen for the con-
venience of people. Therefore, tensor equations such as Eq.(D.39) also hold no matter which coordinate systems
are selected. On the contrary, since the base vectors have different characteristics depending on each coordinate
system, the tensor components differ according to the coordinate system. For example, consider two different arbi-
trary coordinate systems as x-system and x′-system. Then the base vectors are related to each other like Eq.(D.12)
as

gk = βk
i′ g

i′ , βk
i′ ≡

∂xk

∂xi′ , gk′ = βk′
i g

i, βk′
i ≡

∂xk′

∂xi . (D.41a, b, c, d)

The quantities βk
i′ are the coordinate transformation coefficients (coordinate transformation matrix) and satisfy

βi
k′ β

k′
j = δ

i
j, βk

i′ β
j′

k = δ
j′

i′ . (D.42a, b)

Therefore, the components of an arbitrary vector u can be related to each other as

u = ui g
i = ui β

i
j′ g

j′ = u j′ g
j′ → u j′ = β

i
j′ ui and ui = β

j′

i u j′ . (D.43a, b, c)

This rule of transformation applies to any tensors; e.g. the tensors of the second order are transformed as

σi j = βi
k′ β

j
l′ σ

k′l′ , σi′ j′ = βi′
k β

j′

l σ
kl, (D.44a, b)

and four transformation coefficients are necessary for the tensors of the fourth order.
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[5] Bažant, Z. P. and L. Cedolin: Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories,
Dover Publ. Inc., 2003.

[6] Bisshopp, K. E. and D. C. Drucker: Large deflection of cantilever beams, Q. Appl. Math., Vol.3, pp.272-275,
1945.

[7] Bonet, J. and R. D. Wood: Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ.
Press, 1997.

[8] Budiansky, B.: Theory of buckling and post-buckling behavior of elastic structures, Advances in Appl.
Mech., Vol.14, pp.1-65, 1974.

[9] Churchill, R. V., J. W. Brown and R. F. Verhey: Complex Variables and Applications, Third Edition,
McGraw-Hill Co., 1976.

[10] Clough, R. W. and J. Penzien: Dynamics of Structures, McGraw-Hill Co., 1975.

[11] Cowper, G. R.: The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech., Trans. ASME, Vol.33,
pp.335-340, 1966.

[12] DaDeppo, D. A. and R. Schmidt: Instability of clamped-hinged circular arches subjected to a point load, J.
Appl. Mech., Trans. ASME, Vol.42, pp.894-896, 1975.

[13] Desai, C. S. and J. F. Abel: Introduction to the Finite Element Method, Van Nostrand Reinhold, 1972.

[14] Doghri, I. and A. Ouaar: Homogenization of two-phase elasto-plastic composite materials and structures:
Study of tangent operators, cyclic plasticity and numerical algorithm, Int. J. Solids Structures, Vol.40,
pp.1681-1712, 2003.

[15] Drucker, D. C.: Plasticity, Structural Mech., Proc. 1st Sympo. Naval Struct. Mech., ed. by J. N. Goodier
and N. J. Hoff, Pergamon Press, pp.407-455, 1960.

[16] Drucker, D. C. and W. Prager: Soil mechanics and plastic analysis or limit design, Q. Appl. Math., Vol.10,
pp.157-165, 1952.

[17] Elwi, A. E. and D. W. Murray: Skyline algorithms for multilevel substructure analysis, Int. J. Numer. Meth.
Eng., Vol.21, pp.465-479, 1985.

[18] Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc.
Roy. Soc. London, Vol.A241, pp.376-396, 1957.

555



556 BIBLIOGRAPHY
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Kármán, T. von, 223
Katano, S., 547, 548
Kawai, T., 427
Kletschkowski, T., 470
Koyama, S., 545–548
Kuranishi, S., 512, 516, 523,

528, 529
Lee, E.H., 463, 475
Lin, R.C., 470
Lin, S.C., 377
Liyanage, K., 275
Mallett, R.L., 463, 475
Malvern, L.E., 43, 44, 55,

398, 453, 463, 528
Matsui, T., 56
Mehrabadi, M.M., 59, 420
Meyers A., 470
Mori, T., 541
Morrison, P., 33
Mura, T., 60, 377, 403, 534,

535, 538, 542
Murray, D.W., 530
Mutsuyoshi, H., 56
Nayak, G.C., 392, 411
Nemat-Nasser, S., 54, 66,

377, 408, 421, 445, 451,
453, 458, 465, 481, 484,
486, 501, 539, 542

Nishino, F., 163, 275, 509,
528, 529

Noll, W., 453
Oda, M., 420
Ouaar, A., 548
Owen, D.R.J., 411
Penzien, J., 336
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boundary element method, BEM, 136
boundary value problem, 26, 113
Boussinesq problem, 96, 102
Brazilian test, 97
brittle fracture, 376
brittleness, 376
buckling, 221

bifurcation —, 221
Euler —, 227
extremum —, 222
flexural —, 228
inelastic —, 238
lateral-torsional —, 282
torsional —, 281

buckling coefficient
— of columns, 229
— of plates, 297

buckling load, 215
buckling mode, 227, 229
buckling point, 222
bulk modulus, 51
buoyancy, 83
Burgers vector, 99, 403

C
cantilever beam, 13
carbon-fiber-reinforced polymer, 56, 87
Castigliano’s second theorem, 201
catenary, 250
Cauchy-Green deformation tensor

left —, 440
right —, 436

Cauchy integral theorem, 359
Cauchy-Riemann equations, 83
Cauchy’s theorem, 43
Cauchy stress, 453, 458
central difference, 314, 338
centrifugal force, 302
centrifugal moment, 277
centripetal force

Eulerian, 81
Lagrangian, 302

centroid, 109
chain rule, 446
channel section, 152, 269
characteristic length, 434
Christoffel symbol, 552
circular motion with constant speed, 302
clamshell mark, 377

classical Galerkin form, 169
closed section, 254
coaxiality, 387, 388, 393
coefficient

— of effective length, 229
— of kinematic friction, 306
linear — of thermal expansion, 60, 93, 451
— of static friction, 61, 306, 378

cofactor matrix, 30, 438, 537
cohesion, 411, 419
collapse, 422
collocation method, 168
column, 16, 105, 113
compact section, 431
compatibility condition

strain —, 40, 295
compatible strain, 41
complementary potential energy, see ‘total complementary po-

tential energy’
complementary strain energy, 201, 202
complex Fourier series, 319
complex velocity potential, 83
compliance, 54
composite material, 57
compressional wave, 78
compressive strength, 11, 239
condensation, 390
condition

Dirichlet —, 44, 111
Neumann —, 44, 112
Robin —, 44, 112
— of the first kind, 44, 111
— of the second kind, 44, 112
— of the third kind, 44, 112

configuration
current —, 435
initial —, 435
reference —, 436

conformal transformation, 84
conjugateness, 458
conservation law, [see also ‘law of conservation’], 301, 310,

437
conservative, 54
conservative force, 231
consistency condition, 65, 381, 388, 395
consistent mass matrix, 193, 365
constant strain triangle element, 206
constitutive equation, [see also ‘Hooke’s law’], 51

— of generalized Prandtl-Reuss’s plasticity, 396
— of Prandtl-Reuss’s plasticity, 390

constitutive law, 51
contact problems, 517
continuous beam, 29, 123, 127
continuum, 33
contradiction, 109, 260, 284
contravariant base vector, 550
contravariant component, 549
convected coordinate, 436
convergence, 176
convolution [integral], 320
corner force, 288
corotational stress rate, 463
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couple, 1
couple stress, 43, 44
covariant base vector, 550
covariant component, 550
covariant derivative, 552
crack, 147
creep, 66
critical damping, 303
cross beam, 5, 18
cross-sectional area, 108
cubic crystal, 56

face-centered —, 386
current configuration, 435
curvature, 107, 513
curved beam, 105

D
damage theory, 432
damping, 303
damping coefficient, 303
damping constant, 303
damping factor, 303
damping matrix, 324
damping rate, 304
damping ratio, 304
deflection, 107
deformation, 34
deformation gradient, 436
deformation rate, 445
deformation tensor

left Cauchy-Green —, 440
right Cauchy-Green —, 436

deformation theory, 63, 380, 390, 413
degree of statical indeterminacy, 27, 28
delta function, 72, 129, 311, 537
depth-thickness ratio, 297
description

Eulerian —, 79, 440
Lagrangian —, 79, 437
updated Lagrangian —, 458, 463

deviatoric strain, 39
deviatoric stress, 50
deviator stress, 52, 386
diffusion, 211
dilatancy, 64, 387, 408, 420
dilatancy angle, 411
Dirac’s delta function, 72, 129, 311, 537
direct stiffness method, 180
Dirichlet condition, 44, 111
dislocation, 63, 386

edge —, 375
mathematical —, 99, 403
screw —, 375, 538

dislocation line, 375
displacement, 34, 436
displacement function, 177
displacement gradient, 37, 437
displacement method, 188
distortion, 36
distribution, 129
divergence theorem, 45
double Fourier series, 291

drain, 18
Drucker-Prager’s model, 408, 411
Drucker’s postulate, 393
ductile fracture, 376
ductility, 376
Duhamel’s integral, 312, 357
dynamic instability, 232, 330
dynamic magnification factor, 308

E
earth pressure, 154
edge dislocation, [see also ‘dislocation’], 375
effective length of buckling, 229
effective plastic strain, 385
effective stress, 63, 385, 385
effective width, 152
eigenfunction, 341
eigenstrain, 536
eigenvalue problem

— for boundary value problems, 229
— of matrices, 240

elastica, 248, 516
elastic compliance, 54
elastic foundation, 153
elasticity, 51
elastic modulus, 51
elastic perfectly-plastic body, 237, 379
elastic potential, 54
elastic strain, 59, 61
elastic tensor, 51
elementary beam theory, 106
element stiffness equation

— of beam-columns, 240, 521
— of beams, 178
— of beams in motion, 193
— of beams on elastic foundation, 192
— of columns, 177
— of planar frames, 187
— of planar frames in finite displacements, 529
— of planar trusses, 184
— for plane strain problems, 207
— of space frames, 277
— of Timoshenko beams, 510
— of Timoshenko beams in finite displacements, 529
— of torsion, 274

elliptic integral, 248
elongation, 437
embedded coordinate, 436
empirical formula, 434
energy norm, 199
Engesser’s buckling formula, 245, 520
engineering strain, 55, 385
engineering stress, 461
equation of continuity, 79, 446
equation of motion

— of beams, 155, 349
— of frame elements, 369
— of membranes, 298, 344
— of multi-degree-of-freedom systems, 329
— of single-degree-of-freedom systems, 299
— of strings, 250, 339
— of two-degree-of-freedom systems, 324
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equilibrium equation
— of axial forces in beams, 110
— of beam-columns, 224, 521
— of beam-columns on elastic foundation, 245
— of beams on elastic foundation, 154
— of bending of beams, 110
— of bending of plates, 286
— of Cauchy stress, 454
— of flexural torsion, 265
— of forces, 44
— of in-plane forces of plates, 286
— of membranes, 298
— of moments, 44
— of nominal stress, 455
— of rubber, 517
— of Saint-Venant’s torsion, 252
— of second Piola-Kirchhoff stress stress, 457
— of strings, 250
— of Timoshenko beam-columns on elastic foundation,

246
— of Timoshenko beams, 507

equivalent inclusion method, 539
equivalent nodal force

— of beams, 178
— of columns, 177

error, 168, 199
Eshelby tensor, 538
essential boundary condition, 44, 111, 172
Euler buckling, 227
Euler curve, 227
Euler equation, 70, 165, 197, 250
Eulerian description, 79, 440
Euler load, 227
Euler’s formula, 319
even permutation, 46
evolution rule, 63, 386
explicit integration method, 315
extension, 35, 107
extensional stiffness, 109
extensional strain, 35, 443
external force, 3
extremum buckling, 222

F
face-centered cubic crystal, 386
factor of safety, 239, 282
fatigue, 377
FEM, [see also ‘finite element method’], 176
fiber-reinforced material, 87
fiber-reinforced polymer

carbon- — (CFRP), 56, 87
glass- — (GFRP), 87

finite deformation, 435
finite difference, 314, 338
finite displacement theory, 214

linearized —, 219
finite element, 176

— for diffusion, 211
— for seepage flow, 211

finite element method, FEM, 176
adaptive —, 210
X- —, 210

finite rotation, 438
finite strip method, 174
first Piola-Kirchhoff stress, 44, 456, 458
first sectional moment, 108
first sectional moment function, 147
first variation, 69, 197
Flamant solution, 96
flexural compressive strength, 23, 139, 282
flexural rigidity

— of beams, 109
— of plates, 285

flexural tensile strength, 23, 139, 282
flexural-torsional moment, 264
flexural-torsional stiffness, 264
flow rule, 63, 380, 386, 393, 395
flow theory, 63, 386
follower force, 231
Fourier series, 199

complex —, 319
double —, 291

Fourier spectrum, 320
Fourier transform, 319
fracture toughness, 101
frame, 16, 113, 155
free fall, 302
free vibration, 299
frequency response function, 317
FRP, 56, 87
functional, 69, 197
fundamental solution, 136

G
Galerkin form, 170
Galerkin method, 171
Gauss’s theorem, 45
Geiringer’s equations, 418
generalized

— coordinate, 333, 354
— damping constant, 336, 356
— displacement, 333, 354
— force, 334, 356
— Hooke’s law, 54, 61
— mass, 331, 354
— Poisson’s ratio, 56
— Young’s modulus, 56

geometric boundary condition, 44, 111
geometric nonlinearity, 223
geometric stiffness matrix, 240, 523

— of Timoshenko beam, 523, 531
Gerber beam, 18
glass-fiber-reinforced polymer, 87
governing equation, 58
Green’s function, 77, 96, 136, 312, 537
Green strain, 436, 511
Gurson damage model, 433
gusset plate, 5

H
Hagen-Poiseuille flow, 80
hair clip, 222
Hamilton’s principle, 197
hardening, 66, 380
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isotropic —, 404
kinematic —, 404, 484

hardening coefficient, 65, 381, 389, 394–396, 409, 481
hardening rule, 65
Heaviside function, 312
helical spring, 520
Helmholtz decomposition theorem, 78
Hencky’s theorem, 417
Hertz solution, 97
hexagonal crystal, 56
high seas, 100
history-dependency, 389
Hooke’s law, 51

generalized —, 54, 61
incremental —, 389
— in one dimension, 85
— in plane strain, 85, 206
— in plane stress, 85, 284

horizontal stiffener, 22
hydrostatic pressure, 50, 58
hyperelasticity, 470, 474, 480
hypergeometic function, 232
hypoelasticity, 470, 473

I
identity tensor, 437
imaginary unit, 154
impulse response, 311
inclusion, 60, 534
incompatible strain, 384
incompressibility, 57, 58, 79, 389, 446
incremental equilibrium equation

— of Cauchy stress, 466
Lagrangian —, 466
— of nominal stress rate, 466

incremental Hooke’s law, 389
incremental theory, 63, 386
inelastic buckling, 238
inelasticity, 61, 375
inelastic strain, 59, 61
infinitesimal displacement theory, 214
infinitesimal rotation, 37
influence line

— of axial force, 8
— of bending moment, 21, 138, 141
— of displacements, 136
— of shear force, 21, 141

inhomogeneity, 60, 534
initial condition, 155
initial configuration, 435
initial imperfection, 220, 239
initial value/boundary value problem, 155
inner product

— in polar coordinate system, 347
weighted —, 199, 331, 342, 354

integral equation, 100
internal force, 3, 41
interpolation function, 177
invariant, 48

first — of strain, 49
first — of stress, 50
second — of deviatoric strain, 52

second — of deviatoric stress, 52, 384
— of stress, 49
third — of deviatoric stress, 384

inverse Fourier transform, 319
inverse matrix, 30, 195
irrotational flow, 81
isoparametric element, 210
isotropic elasticity, 51
isotropic hardening, 404
isotropic tensor, 53
isotropy, 51
Iwakuma’s buckling formula, 520

J
Jacobian, 437
Jaumann rate

— of Cauchy stress, 463
— of Kirchhoff stress, 463

Jaumann stress rate, 463
joint equation, 200
joint of Gerber beam, 18
Joukowski transformation, 84
J2 flow theory, 397

K
Kármán, see ‘von Kármán’
Kármán’s plate theory, see ‘von Kármán’s plate theory’
Kelvin-Voigt model, 303
kernel, 100
kinematically admissible field, 67, 423

— of beams, 200, 427
kinematic friction, 306
kinematic hardening, 404, 484
kinematics, 164, 505, 512
kinetic energy, 301
Kirchhoff-Love assumption, 283
Kirchhoff stress, 456
Kötter’s equation, 419
Kronecker delta, 38

L
Lagrange equation, 197
Lagrange function, 197
Lagrange multiplier, 71, 170, 248, 250, 516
Lagrangian description, 79, 437
Lamé constants, 51
laminar flow, 80
Landau’s symbol, 234
large deformation theory, 214, 435
large displacement theory, 214
large earthquake, 309
lateral buckling, 282
lateral force, 13
lateral-torsional buckling, 282
law of conservation

— of energy, 301
— of mass, 437
— of momentum, 310

layered plate, 87
least square method, 168, 176, 182, 199
left Cauchy-Green deformation tensor, 440
left stretch tensor, 440
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Legendre polynomials, 348
limit analysis, 421
linear coefficient of thermal expansion, 60, 93, 451
linear distribution of bending strain, 107
linear elasticity, 51
linearized finite displacement theory, 219
L-load, 8
loading, 64, 379, 389, 394
local buckling, 283, 293
localized deformation, 420, 461
Lode angle, 392
logarithmic decrement, 305
logarithmic strain, 443
logarithmic strain rate, 449
longitudinal vibration, 155
longitudinal wave, 78
lower bound theorem, 424
Lüders band, 461, 484, 501
lumped mass matrix, 330

M
main girder, 5
mass, 1
mass density, 437
mass matrix, 193, 324

consistent —, 193, 365
lumped —, 330

material derivative, 79, 446
material nonlinearity, 223
material point, 34, 436
material time derivative, 79, 446
mathematical dislocation, 99, 403
matrix analysis of structures, 182, 510
maximum axial force, 11
maximum bending moment, 22, 139
maximum friction force, 306
maximum shear force, 22, 139
Maxwell’s reciprocal theorem, 73, 137
member, 3
membrane, 298
membrane analogy, 274
metric tensor, 550
microtremor, 322
Mindlin-Reissner plate, 283
Mises’ yield condition, see ‘von Mises’ yield condition’
mixed condition, 44, 112
modal analysis

— of beam, 353
— of multi-degree-of-freedom system, 333

mode
buckling —, 227, 229
natural vibration —, 325
orthogonal —, 331
vibration —, 325, 330, 341, 344, 351

model
Drucker-Prager’s —, 408, 411
Gurson damage —, 433
Kelvin-Voigt —, 303
Mooney-Rivlin —, 473
Prager’s —, 405
Reuss —, 433, 534
Shanley —, 238

Voigt —, 432, 534
Ziegler’s —, 405

modified Engesser’s formula, 245, 520
Mohr-Coulomb’s failure criterion, 411, 419
Mohr’s strain circle, 86
Mohr’s stress circle, 416
moment diagram, 14
moment distribution method, 200
moment of inertia, 2
Mooney-Rivlin model, 473
Müller-Breslau’s theorem, 140
multiply connected, 273

N
natural angular frequency, 301
natural boundary condition, 44, 112, 172
natural circular frequency, 301
natural coordinate, 210
natural frequency, 301
natural period, 300
natural strain, see ‘logarithmic strain’
natural vibration mode, 325
Navier’s solution, 291
Navier-Stokes equation, 79
necking, 420, 496
Neumann condition, 44, 112
neutral, 221
neutral axis, 109
neutral loading, 389, 394
neutral plane, 109
nodal point, 5
node, 176
nominal stress, 453, 458, 461
nominal stress rate, 465
non-associated flow rule, 397, 408, 481
noncoaxiality, 412
noncompact section, 431
nonconforming element, 293
nonconservative force, 231
nonlinear elasticity, 237
non-local theory, 33
norm, 199
normality rule, 393
normal stress, 43

O
objectivity, 62
octahedral stress, 63
odd permutation, 46
Oldroyd stress rate, 463
open section, 254, 258
orthogonal function, 199, 292
orthogonality

— of natural vibration mode, 331
— of vibration mode of beams, 354
— of vibration mode of membranes, 346, 347
— of vibration mode of strings, 342

orthogonal mode, 331
orthotropy, 55
over damping, 303

P
panel point, 3
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Papkovich-Neuber potentials, 101
passive damper, 329
peak strength, 431
penalty method, 517
perfect fluid, 81
perfect plasticity, 66
perfect system, 218
permutation

even —, 46
odd —, 46

permutation symbol, 45, 551
permutation tensor, 551
personal computer, 20, 182
perturbation, 247, 516
perturbation method, 247
phase plane, 305
phase velocity, 78, 339
piecewise polynomial, 176
Piola-Kirchhoff stress

first —, 44, 456, 458
second —, 456, 459, 512

π-plane, 392
plane strain, 84

plastically —, 410, 415, 421, 485
plane stress, 85
plastically plane strain, 410, 415, 421, 485
plastic collapse, 422
plastic deformation, 61, 375
plastic hinge, 383, 426
plasticity, 61, 238
plastic moment, 382, 426
plastic potential, 63, 395
plastic section modulus, 426
plastic volumetric strain, 408
Poiseuille flow, see ‘Hagen-Poiseuille flow’
Poisson’s ratio, 51

generalized —, 56
polar decomposition theorem, 438, 528
pole, 359
polycrystalline metal model, 484
positive-definiteness, 57, 241
post-buckling, 247
potential energy, see ‘total potential energy’, 301
potential energy of external forces, 69, 197
power law, 413
power spectrum density function, 320
Prager’s model, 405
Prandtl-Reuss’s equation, 64, 387, 391, 394
pressure wave, 78
primary wave, 78
principal axis of cross sections, 277
principal deviatoric stress, 384
principal direction of strain, 37, 49
principal direction of stress, 46
principal strain, 37, 49
principal stress, 46
principle

— of action and reaction, 3–5
— of complementary virtual work, 68, 70, 200
Hamilton’s —, 197
— of maximum plastic work, 393
— of minimum strain energy, 202

— of minimum total potential energy, 69, 198
Saint-Venant’s —, 90, 148
— of stationary total potential energy, 69, 197
— of superposition, 125
variational —, 197
— of virtual work, 67, 67, 172, 197

prismatic bar, 272
program, 185, 189, 208
progressive failure, 432
proportional damping, 336
P-wave, 78
Pythagorean theorem, 37, 247

Q
quadratic form, 197

R
radius of gyration, 227
radius thickness ratio, 253, 262
Rahmen, 16, 113, 155
ramp, 17
rank, 195
rate of change of twist, 252
rate of deformation, 445
rate of equivolumetric deformation, 449
rate of irrotational deformation, 449
rate of plastic work, 387
rate of stress-work, 455
Rayleigh damping, 336
Rayleigh-Ritz method, 197
reaction force, 3
reaction moment, 12
reciprocal theorem

— of beam vibration, 362
Betti’s —, 73, 138
Maxwell’s —, 73, 137
— of one degree-of-freedom vibration, 314

reciprocity, 75
reduced modulus theory, 238
redundancy, 28
reference configuration, 436
residual deformation, 61
residual strength, 431
residual stress, 239
residue, 360
resonance, 308
Reuss model, 433, 534
Reynolds number, 80
right Cauchy-Green deformation tensor, 436
right stretch tensor, 438
rigid body displacement, 36
rigid body rotation, 36
rigid body translation, 36
rigid perfectly-plastic body, 379
Ritz method, 197
Robin condition, 44, 112
rolling, 239
rosette gauge, 86
rotation

finite —, 438
infinitesimal —, 37

rotational inertia, 371
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rotation vector, 445

S
safety factor, 239, 282
Saint Venant-Kirchhoff material, 470, 472
Saint-Venant’s principle, 90, 148
Saint-Venant’s torsional constant, [see also ‘torsional con-

stant’], 252
Saint-Venant’s torsional moment, 252
Saint-Venant’s torsional stiffness, 252
scale effect, 433
Schmid law, 483
screw dislocation, [see also ‘dislocation’], 375
secant modulus, 413
secondary wave, 78
second invariant of deviatoric strain, 52
second invariant of deviatoric stress, 52, 384
second Piola-Kirchhoff stress, 456, 459, 512
second variation, 198
sectional moment of inertia, 108
sectional polar moment, 252, 281
section modulus, 21, 109, 235
seepage flow, 211
seismic coefficient method, 309
seismograph, 310
self-adjoint system, 73
self-consistent method, 543
self-deployable structure, 223
Shanley model, 238
shape function, 210
shear band, 413, 461, 484
shear center, 151, 271
shear diagram, 14
shear flow, 150, 255
shear force, 12, 13
shearing strain, 35
shearing yield stress, 63, 385
shear lag, 152
shear modulus, 51
shear strength, 23, 385
shear stress, 43
shear wave, 78
shell, 283
shoe, 14
sifting property, 129
simple beam, 15
single crystal model, 482
singly connected, 273
singular matrix, 195
sink, 80
slenderness parameter, 237

— for lateral buckling, 282
slenderness ratio, 203, 227

— for flexural torsion, 268
— of Timoshenko beams, 507

slide rule, 159
slip line theory, 415
slope, 107
slope-deflection method, 200
snap-through, 222
source, 80
Southwell method, 236

space structure, 222
specific body force, 44
spectral representation, 48, 439
spin, 81, 445, 445
splice plate, 22
stability criterion, 217, 220
stability problem, 214
statically admissible field, 67, 416, 423

— of beams, 200, 427
statically determinate, 4
statically determinate equivalent system, 125
statically indeterminate force, 125
statically indeterminate structure, 30
static boundary condition, 44, 112
static friction, 61, 306, 378
step function, 312
stiffener

horizontal —, 22
vertical —, 18, 22

stiffness equation, [see also ‘element stiffness equation’], 177
stiffness matrix, 324

— of beam-columns, 240
— of beams, 178
— of beams on elastic foundation, 192
— of columns, 177
— of planar frames, 187
— of planar frames in finite displacements, 531
— of planar trusses, 184
— for plane strain problems, 208
— of space frames, 278
— of Timoshenko beams, 509, 510
— of Timoshenko beams in finite displacements, 531
— of torsion, 274

story equation, 200
strain, 36

Almansi —, 440
Biot’s —, 443
engineering —, 55, 385
extensional —, 443
Green —, 436, 511
logarithmic —, 443

strain compatibility condition, 40, 295
strain energy, 55, 69, 197
strain energy density function, 470
strain energy function, 54
strain-gauge rosette, 86
stream function, 83
streamline, 82, 83
strength, 3

compressive —, 239
flexural compressive —, 282
flexural tensile —, 282
shear —, 385
tensile —, 239

strength correlation
— of axial force and bending, 235

stress, 20, 42
Biot —, 458, 459
Cauchy —, 453, 458
first Piola-Kirchhoff—, 44, 456, 458
Kirchhoff—, 456
nominal —, 453, 458, 461
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second Piola-Kirchhoff—, 456, 459, 512
true —, 453, 458

stress concentration factor, 91, 98, 102
stress function, 89
stress intensity factor, 101
stress invariant, 49
stress rate

corotational —, 463
Jaumann —, 463
nominal —, 465
Oldroyd —, 463
Truesdell —, 464

stress relaxation, 66
stress resultant, 43
stress-strain relation, [see also ‘Hooke’s law’], 51
stress vector, 42
stretch, 35, 438
stretch tensor

left —, 440
right —, 438

string, 250
stringer, 5
strong form, 169
structure for falling prevention of bridge, 18
Sturm-Liouville problem, 173
subgrade reaction, 154
submission, 223
subparametric element, 211
summation convention, 549
super-convergence, 176
superparametric element, 211
surface force, 44
surface to the negative direction, 13, 43
surface to the positive direction, 13, 43
S-wave, 78

T
tangent compliance

— of generalized Prandtl-Reuss’s plasticity, 396
— of Prandtl-Reuss’s plasticity, 390

tangent modulus, 413
— of generalized Prandtl-Reuss’s plasticity, 396
— of Prandtl-Reuss’s plasticity, 390

tangent modulus theory, 237
tangent stiffness, 219, 529
tensile strength, 11, 239
tensile yield stress, 63, 385
tensor, 36
tensor product, 48
test function, 129, 177
theorem

Castigliano’s second —, 201
Cauchy integral —, 359
Cauchy’s —, 43
divergence —, 45
Gauss’s —, 45
Helmholtz decomposition —, 78
Hencky’s —, 417
Müller-Breslau’s —, 140
polar decomposition —, 438, 528
Pythagorean —, 37, 247
reciprocal —, 137, 138, 362

three-moment —, 200
upper-lower bound —, 424

theory
damage —, 432
deformation —, 63, 380, 390, 413
elementary beam —, 106
finite displacement —, 214
flow —, 63, 386
Gurson’s —, 433
incremental —, 63, 386
infinitesimal displacement —, 214
J2 flow —, 397
large deformation —, 214, 435
large displacement —, 214
linearized finite displacement —, 219
non-local —, 33
reduced modulus —, 238
slip line —, 415
tangent modulus —, 237
von Kármán’s plate —, 293

thermal expansion, 60
thermal strain, 74, 92
thickness parameter, 520
thin-walled member, 148, 251, 254
third invariant of deviatoric stress, 384
three-moment theorem, 200
Timoshenko beam, 152, 505
torsional buckling, 281
torsional constant

— of circular columns, 252
— of circular tubes, 253
— of thin-walled circular tubes, 253
— of thin-walled closed multicell sections, 258
— of thin-walled closed sections, 256
— of thin-walled open sections, 261
— of thin-walled rectangular sections, 261

torsional constants ratio, 268
total complementary potential energy, 70, 201
total potential energy, 69, 197
total-strain theory, [see also ‘deformation theory’], 380
toughness, 376
trace, 39
traction, 42
trajectory, 305, 441
transient response, 307
transversely isotropic, 56
transverse wave, 78
Tresca’s yield condition, 62, 392
trial function, 177
triaxial compression test, 52, 386
trivial solution, 227, 228, 240
Truesdell stress rate, 464
true strain, see ‘logarithmic strain’
true stress, 453, 458
truss, 4, 155

U
ultimate lateral strength, 422
unit impulse response, 311
unit impulsive force, 311
unit load method, 131, 135, 156, 202

— of elastic media, 77
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— of truss structures, 157
unit tensor, 437
unit-warping function, 266, 271
unloading, 65, 237, 379, 389, 394
updated Lagrangian description, 458, 463
upper bound theorem, 424
upper-lower bound theorem, 424

V
variational principle, 197
variational problem, 197
velocity, 444
velocity gradient, 444
velocity potential, 83
vertical stiffener, 18, 22
vibration mode, 325, 330, 341, 344, 351
vidro, 222
vinyl-ester synthetic resin, 56
virtual displacement, 69, 172
virtual work equation, 172

— of beam-columns, 240, 521
— of beams, 131, 165, 178
— of beams in motion, 197
— of beams on elastic foundation, 192
— of columns, 176
— in finite displacements, 512
— of flexural torsion of bars, 274
— for plane strain problems, 206
— of plates, 293
— of Saint-Venant’s torsion of bars, 275
— for three-dimensional problems, 205
— of Timoshenko beams, 507, 508

viscoelasticity, 155
viscosity, 66, 375
viscous damping coefficient, 303
void formation, growth and coalescence, 433
Voigt constants, 52, 55
Voigt model, 432, 534
volumetric strain, 39

von Kármán’s plate theory, 293
von Mises’ yield condition, 63, 385, 391
vorticity, 445

W
warping, 262
warping constant, 264
warping displacement, 263
warping function, 266
wave equation, 78, 155, 250, 298, 339
weak form, 169
weight, 168, 198
weighted inner product, 199, 331, 342, 354
weighted residual method, 168, 198
weight function, 170
white noise, 320
Wiener-Khintchine relation, 321
William’s toggle, 222

X
X-FEM, 210

Y
yield condition, 62, 379, 381, 385

Tresca’s —, 392
von Mises’ —, 63, 385, 391

yield function, 64, 381, 385, 391
yield moment, 382, 426
yield stress, 63, 227, 237, 385

shearing —, 63, 385
tensile —, 63, 379, 385

yield surface, 391
Young’s modulus, 51

generalized —, 56
yo-yo balloon, 310

Z
Ziegler’s model, 405
Zimmermann effect, 363
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